Shaping Air Flow Characteristics of a High-Speed Rotary-Bell Sprayer for Automotive Painting Processes

2015 ◽  
Vol 137 (11) ◽  
Author(s):  
Ch. Stevenin ◽  
Y. Béreaux ◽  
J.-Y. Charmeau ◽  
J. Balcaen

Electrostatic rotary bell sprayers (ERBS) are widely used in automotive painting applications. These processes involve complex airflows to shape paint sprays and transport droplets toward automotive parts to be coated. Despite the importance of shaping airflow on global spray characteristics, a detailed characterization of this aerodynamic flow is still missing. For this purpose, an experimental study was conducted on the influence of some ERBS operating parameters on the development and characteristics of shaping airflow. Results show that, for low swirl numbers, the flow behavior is close to that of annular swirling jets and a good agreement is found between ERBS flow characteristics and data available in literature. When rotational speed of the bell cup is sufficiently fast, a change of regime is observed with a shift in the longitudinal flow development and an increase of recirculation zone length. This change of regime is attributed to vortex breakdown instability, known to occur when high swirl strength is beyond a critical value. Experimental results obtained in this study put forward a clear link between the shaping air flow rate and the rotation frequency on the aerodynamics and also provide valuable leads to design shaping air flow in modern ERBS.

2014 ◽  
Vol 525 ◽  
pp. 256-259
Author(s):  
Wen Peng Hong ◽  
Guo Qing Niu ◽  
Ming Liang Jin

To investigate flow characteristics by high speed video systems, experimental study was conducted to gas-liquid two-phase flow in horizontal round small tube with diameter of 5.5 and 2.6 mm, the typical flow pattern images were obtained, but stratified flow of the conventional size horizontal channel had not been discovered. Gas and liquid superficial velocities range from 0.1 to 100 ms-1, and 0.01to 10.0 ms-1 respectively. Flow patterns for co-current flow of air-water mixtures in horizontal round tubes are determined by high-speed video analysis to develop flow regime maps and the transitions between these flow regimes. Comparisons with the relevant literatures show that diameter and surface tension effects play an important role in determining the flow patterns and transitions between them.


2011 ◽  
Vol 130-134 ◽  
pp. 2345-2348
Author(s):  
Xiao Xing ◽  
Guo Ming Ye

To investigate the effect of air flow in an pneumatic splicer on splicing performance, a computational fluid dynamics (CFD) model has been developed to simulate the air flow characteristics in an splicing chamber. Three-dimensional numerical simulation is conducted and standard K-ε turbulence model is used. Velocity distributions in the chamber are presented and analyzed. The computational results show that the velocities in the chamber are transonic. The air flows in the chamber are two swirling flows with opposite directions. This work also shows that CFD technique can provide a better understanding of the behavior of the high speed air flow in the air splicing chamber.


Author(s):  
Pravin Jadhav ◽  
Neeraj Agrawal

A detailed literature review on the flow characterization of the capillary tubes is presented in this paper. The flow behavior is reviewed for straight, helically, and spirally coiled capillary tubes at different operating and geometric conditions by considering various aspects in the tube. This paper summarizes experimental and numerical study on the adiabatic and nonadiabatic straight and coiled capillary tubes at different geometries conditions. The vital information of the range of the tube geometry and operating conditions are discussed, which can be utilized for further studies on the capillary tube. Various methodologies with generalized correlations are indicated. It has been observed that there are even more studies need to do with environmentally friendly refrigerants with various practical aspects in the capillary tube. It would be interesting to find the coiling effect on the design and simulation of the capillary tube. In addition to that more experimental and numerical studies need to explore the nonadiabatic coiled capillary tube. It would be fascinating to study the metastable condition in the capillary tube and set suitable relations to present its effect on the mass flow rate.


1962 ◽  
Vol 203 (3) ◽  
pp. 417-421 ◽  
Author(s):  
S. Charm ◽  
G. S. Kurland

The shear stress-shear rate characteristics of canine blood were determined in a cone and plate viscometer and could be expressed by a power-law equation. The differences in the shear stress-shear rate and tube flow characteristics suggest a marginal gap of plasma at the tube wall. It also appears from these considerations that the gap width of plasma increases with tube diameter. Laminar flow considerations are insufficient for explaining tube flow behavior. High-speed motion pictures indicate collisions between cells in tube flow and the cells do not appear to remain in discrete streamlines. It is suggested that these uncalculated energy losses are the reason why tube flow behavior cannot be predicted from shear stress-shear rate information.


2017 ◽  
Vol 137 (7) ◽  
pp. 898-903
Author(s):  
Haruka Takahashi ◽  
Shizuka Bando ◽  
Kosuke Oiwa ◽  
Akio Nozawa ◽  
Tomoharu Ishikawa ◽  
...  
Keyword(s):  

Author(s):  
Elahe Mirabi ◽  
Nasrollahi Nazanin

<p>Designing urban facades is considered as a major factor influencing issues<br />such as natural ventilation of buildings and urban areas, radiations in the<br />urban canyon for designing low-energy buildings, cooling demand for<br />buildings in urban area, and thermal comfort in urban streets. However, so<br />far, most studies on urban topics have been focused on flat facades<br />without details of urban layouts. Hence, the effect of urban facades with<br />details such as the balcony and corbelling on thermal comfort conditions<br />and air flow behavior are discussed in this literature review. <strong>Aim</strong>: This<br />study was carried out to investigate the effective factors of urban facades,<br />including the effects of building configuration, geometry and urban<br />canyon’s orientation. <strong>Methodology and Results</strong>: According to the results,<br />the air flow behavior is affected by a wide range of factors such as wind<br />conditions, urban geometry and wind direction. Urban façade geometry<br />can change outdoor air flow pattern, thermal comfort and solar access.<br /><strong>Conclusion, significance and impact study</strong>: In particular, the geometry of<br />the facade, such as indentation and protrusion, has a significant effect on<br />the air flow and thermal behavior in urban facades and can enhance<br />outdoor comfort conditions. Also, Alternation in façade geometry can<br />affect pedestrians' comfort and buildings energy demands.</p>


Author(s):  
V. S. IVANOV ◽  
◽  
V. S. AKSENOV ◽  
S. M. FROLOV ◽  
P. A. GUSEV ◽  
...  

Modern high-speed unmanned aerial vehicles are powered with small-size turbojets or ramjets. Existing ramjets operating on the thermodynamic cycle with de§agrative combustion of fuel at constant pressure are efficient at flight Mach numbers M ranging from about 2 to 6.


2021 ◽  
Vol 11 (9) ◽  
pp. 3934
Author(s):  
Federico Lluesma-Rodríguez ◽  
Temoatzin González ◽  
Sergio Hoyas

One of the most restrictive conditions in ground transportation at high speeds is aerodynamic drag. This is even more problematic when running inside a tunnel, where compressible phenomena such as wave propagation, shock waves, or flow blocking can happen. Considering Evacuated-Tube Trains (ETTs) or hyperloops, these effects appear during the whole route, as they always operate in a closed environment. Then, one of the concerns is the size of the tunnel, as it directly affects the cost of the infrastructure. When the tube size decreases with a constant section of the vehicle, the power consumption increases exponentially, as the Kantrowitz limit is surpassed. This can be mitigated when adding a compressor to the vehicle as a means of propulsion. The turbomachinery increases the pressure of part of the air faced by the vehicle, thus delaying the critical conditions on surrounding flow. With tunnels using a blockage ratio of 0.5 or higher, the reported reduction in the power consumption is 70%. Additionally, the induced pressure in front of the capsule became a negligible effect. The analysis of the flow shows that the compressor can remove the shock waves downstream and thus allows operation above the Kantrowitz limit. Actually, for a vehicle speed of 700 km/h, the case without a compressor reaches critical conditions at a blockage ratio of 0.18, which is a tunnel even smaller than those used for High-Speed Rails (0.23). When aerodynamic propulsion is used, sonic Mach numbers are reached above a blockage ratio of 0.5. A direct effect is that cases with turbomachinery can operate in tunnels with blockage ratios even 2.8 times higher than the non-compressor cases, enabling a considerable reduction in the size of the tunnel without affecting the performance. This work, after conducting bibliographic research, presents the geometry, mesh, and setup. Later, results for the flow without compressor are shown. Finally, it is discussed how the addition of the compressor improves the flow behavior and power consumption of the case.


Sign in / Sign up

Export Citation Format

Share Document