Effects of Blade Deformation on the Performance of a High Flow Coefficient Mixed Flow Impeller

2015 ◽  
Vol 137 (12) ◽  
Author(s):  
Hamid Hazby ◽  
Ian Woods ◽  
Michael Casey ◽  
Ryusuke Numakura ◽  
Hideaki Tamaki

The effects of blade deformation under running conditions on the performance of a highly loaded transonic mixed flow impeller were investigated. Two impellers were manufactured, one using the “running” blade profiles as designed and one using the converted “unrunning” or “cold” geometry. Both impellers were tested experimentally and investigated numerically. The test data taken with smooth casing showed that at maximum speed, the isentropic efficiency and pressure ratio of the running geometry was higher than the unrunning geometry by about 0.4% and 1.4%, respectively. However, the difference in performance diminished in the presence of recirculating casing treatment. Numerical calculations suggested that the differences at high speeds were mainly due to the variation in the impeller tip clearance. The calculations using deformed blade profiles under centrifugal load only, predicted performance differences which were about twice as high as the measured values. However, closer predictions were obtained when the effects of pressure loads on blade deformation were included using closely coupled fluid-structural analyses.

Author(s):  
Hamid Hazby ◽  
Ian Woods ◽  
Michael Casey ◽  
Ryusuke Numakura ◽  
Hideaki Tamaki

The effects of blade deformation under running conditions on the performance of a highly loaded transonic mixed flow impeller were investigated. Two impellers were manufactured, one using the “running” blade profiles as designed and one using the converted “unrunning” or “cold” geometry. Both impellers were tested experimentally and investigated numerically. The test data taken with smooth casing showed that at maximum speed, the isentropic efficiency and pressure ratio of the running geometry was higher than the unrunning geometry by about 0.4% and 1.4%, respectively. However, the difference in performance diminished in the presence of recirculating casing treatment. Numerical calculations suggested that the differences at high speeds were mainly due to the variation in the impeller tip clearance. The calculations using deformed blade profiles under centrifugal load only, predicted performance differences which were about twice as high as the measured values. However, closer predictions were obtained when the effects of pressure loads on blade deformation were included using closely coupled fluid-structural analyses.


Author(s):  
Juan Du ◽  
Felix Kauth ◽  
Jichao Li ◽  
Qianfeng Zhang ◽  
Joerg R. Seume

Abstract This paper aims at experimentally demonstrating the effects of axial slot casing treatment and tip gap variation on compressor performance, unsteady tip clearance flow, and stall inception features in a highly-loaded mixed-flow compressor at partspeed. Two tip gaps (0.32% and 0.64% of rotor blade chord at mid-span) were tested at three rotational speeds. A semicircular axial slot casing treatment improves compressor stability. The experimental results show that this casing treatment significantly moves the stability limit at partial speeds towards lower mass flow for both tip gaps, compared to the reference case without casing treatment. In the case of the compressor with casing treatment, efficiency increases for the large tip gap and decreases for the small tip gap. Dynamic pressure transducers installed in the casing upstream and along the rotor tip chord direction are used to detect the unsteady behavior of tip region flow and stall inception signals of the compressor. The characteristic frequency in the tip region decreases, and the oscillating amplitude first decreases and then increases during the throttling process, regardless of tip gap size or casing treatment. For axial compressors, by contrast, the observation in previous work has been an increase of the oscillating amplitude with decreasing flow coefficient. This is a surprising result of our work. Neither experiment nor CFD so far was able to explain why the trend in this mixed-flow compressor is different from the trend expected from axial compressors. The compressor stalls through the spike stall inception both with and without casing treatment. This observation also differs from recent studies on axial compressors, which demonstrated that casing treatments could change the type of stall inception. The unstable disturbance indicating initial stall inception initially appears in the blade tip region from blade mid-chord to trailing edge, and then propagates upstream towards the leading edge. This disturbance might be generated by the reversed flow separation near mid-chord.


Author(s):  
D. Ramesh Rajakumar ◽  
S. Ramamurthy ◽  
M. Govardhan

Experimental Investigations are carried out to study the effect of tip clearance flow in a mixed flow compressor stage. Two configurations, namely; constant and variable clearance gaps between impeller and stationary shroud are considered. For the purpose of the present investigations, a mixed flow compressor stage is designed and fabricated. The flow investigations were carried out in a closed circuit compressor rig. Detailed steady and unsteady measurements were carried out for three clearance gaps, namely; 0.5 mm, 0.75 mm, 0.9 mm. From the experimental investigations it is shown that constant tip clearance configurations show better performance in terms of pressure ratio and efficiency compared to variable clearance configurations. For a given configuration the pressure ratio and efficiency of the stage decrease with increase in the tip gap without indicating any optimum value. Tip clearance flow has considerable effect on the flow through the diffuser and the unsteady flow gets amplified and carried away into the vane diffuser.


Author(s):  
N. Karamanis ◽  
R. F. Martinez-Botas ◽  
C. C. Su

The performance and detailed flow characteristics of a high pressure ratio mixed flow turbine has been investigated under steady and pulsating flow conditions. The rotor has been designed to have a nominal constant incidence (based on free vortex flow in the volute) and it is for use in an automotive high speed diesel turbocharger. The results indicated a departure from the quasi-steady analysis commonly used in turbocharger turbine design. The pulsations from the engine have been followed through the inlet pipe and around the volute; the pulse has been shown to propagate close to the speed of sound and not according to the bulk flow velocity as stated by some researchers. The flow entering and exiting the blades has been quantified by a laser Doppler velocimetry system. The measurements were performed at a plane 3.0 mm ahead of the rotor leading edge and 9.5 mm behind the rotor trailing edge. The turbine test conditions corresponded to the peak efficiency point at 29,400 and 41,300 rpm. The results were resolved in a blade-to-blade sense to examine in greater detail the nature of the flow at turbocharger representative conditions. A correlation between the combined effects of incidence and exit flow angle with the isentropic efficiency has been shown. The unsteady flow characteristics have been investigated at two flow pulse frequencies, corresponding to internal combustion engine speeds of 1600 and 2400 rpm. Four measurement planes have been investigated: one in the pipe feeding the volute, two in the volute (40° and 130° downstream of the tongue) and one at the exit of the turbine. The pulse propagation at these planes has been investigated; the effect of the different planes on the evaluation of the unsteady isentropic efficiency is shown to be significant. Overall, the unsteady performance efficiency results indicated a significant departure from the corresponding steady performance, in accordance with the inlet and exit flow measurements.


Author(s):  
Juan Du ◽  
Joerg R. Seume

Casing treatments (CTs) have been proved to beneficially affect the behavior of tip clearance flow and compressor stability. This paper presents the design of casing treatment for a mixed-flow compressor with a very small tip gap of 0.1mm. In the first part, the potential of applying two traditional types of casing treatments, i.e. circumferential grooves and axial slots, to enhance the stability of a mixed-flow compressor is investigated. The flow details in the reference compressor with smooth casing are examined first. It is found that a separating vortex is formed due to the reversed flow on the blade suction side near the rotor trailing edge at the near-stall point. It is supposed to be responsible for the decrease in total pressure ratio when the compressor approaches to stall. The numerical stall, i.e. the breakdown of the simulation, is initiated from the spillage of tip leakage flow over the rotor blade leading edge. The effect of circumferential grooves on the compressor performances is not remarkable. The implement of axial slots ameliorates the total pressure ratio and extend the flow range substantially, but with higher efficiency penalty than the circumferential grooves. The recirculation formed in the axial skewed slots eliminates the separation vortex near the trailing edge and suppresses the spillage of the tip leakage flow forward the rotor leading edge simultaneously. The axial skewed slots are further designed and optimized numerically by DoE (Design of Experiments). As DoE factors the axial length, the height, the open area ratio, and the number per blade passage of the slots are varied. Their effects on the two target values stall margin and polytropic efficiency are investigated. The plot of stall margin improvement (SMI) with a function of the peak efficiency improvement (PEI) indicates that the SMI changes reversely with the PE. There are two trends in the correlation curves of SMI with PE. For the configurations with the open area ratio of 20%, the SMI is changed from 9% to 23% with 1% decrease in PE by varying other three factors. For the CTs with the open area ratio of 60% the augment in SMI from 17.8% to 26.3% produces extra efficiency loss of 4.2%.


2013 ◽  
Vol 136 (2) ◽  
Author(s):  
Sungho Yoon ◽  
Eric Curtis ◽  
John Denton ◽  
John Longley

In this paper, the effect of seal clearance on the efficiency of a turbine with a shrouded rotor is compared with the effect of the tip clearance when the same turbine has an unshrouded rotor. The shrouded versus unshrouded comparison was undertaken for two turbine stage designs one having 50% reaction, the other having 24% reaction. Measurements for a range of clearances, including very small clearances, showed three important phenomena. Firstly, as the clearance is reduced, there is a “break-even clearance” at which both the shrouded turbine and the unshrouded turbine have the same efficiency. If the clearance is reduced further, the unshrouded turbine performs better than the shrouded turbine, with the difference at zero clearance termed the “offset loss.” This is contrary to the traditional assumption that both shrouded and unshrouded turbines have the same efficiency at zero clearance. The physics of the break-even clearance and the offset loss are discussed. Secondly, the use of a lower reaction had the effect of reducing the tip leakage efficiency penalty for both the shrouded and the unshrouded turbines. In order to understand the effect of reaction on the tip leakage, an analytical model was used and it was found that the tip leakage efficiency penalty should be understood as the dissipated kinetic energy rather than either the tip leakage mass flow rate or the tip leakage loss coefficient. Thirdly, it was also observed that, at a fixed flow coefficient, the fractional change in the output power with clearance was approximately twice the fractional change in efficiency with clearance. This was explained by using an analytical model.


Author(s):  
Rodrigo R. Erdmenger ◽  
Vittorio Michelassi

The impact of leading edge sweep in an attempt to reduce shock losses and extend the stall margin on axial compressors has been extensively studied, however only a few studies have looked at understanding the impact of leading edge contouring on the performance of centrifugal compressors. The present work studies the impact of forward and aft sweep on the main and splitter blade leading edge of a generic high flow coefficient and high pressure ratio centrifugal compressor design and the impact on its overall peak efficiency, pressure ratio and operating range. The usage of aft sweep on the main blade led to an increase of the pressure ratio and efficiency, however it also led to a reduction of the stable operating range of the impeller analyzed. The forward sweep cases analyzed where the tip leading edge was displaced axially forward showed a slight increase in pressure ratio, and a significant increase on operating range. The impact of leading edge sweep on the sensitivity of the impeller performance to tip clearance was also studied. The impeller efficiency was found to be less sensitive to an increase of tip clearance for both aft and forward sweep cases studied. The forward sweep cases studied also showed a reduced sensitivity from operating range to tip clearance. The studies conducted on the splitter leading edge profile indicate that aft sweep may help to increase the operating range of the impeller analyzed by up to 16% while maintaining similar pressure ratio and efficiency characteristics of the impeller. The improvement of operating range obtained with the leading edge forward sweep and splitter aft sweep was caused by a reduction of the interaction of the tip vortex of the main blade with the splitter tip, and a reduction of the blockage caused by this interaction.


2015 ◽  
Vol 77 (8) ◽  
Author(s):  
M. H. Padzillah ◽  
S. Rajoo ◽  
R. F. Martinez-Botas

Traditionally, the turbocharger has been an essential tool to boost the engine power especially the diesel engine. However, in recent years it is seen as an enabling technology for engine downsizing of all internal combustion engines. The use of mixed flow turbine as replacement for radial turbine in an automotive turbocharger has been proven to deliver better efficiency at high loading conditions. Furthermore, the use vanes that match the geometrical properties at the turbine leading edge could further increase its performance. However, improvement on the overall turbocharger performance is currently limited due to lack of understanding on the flow feature within the turbine stage. Therefore, the use of validated Computational Fluid Dynamics (CFD) in resolving this issue is necessary. This research attempts to provide description of flow field within the turbocharger turbine stage by plotting velocity and pressure contours at different planes. To achieve this aim, a numerical model of a full stage turbocharger turbine operating at 30000rpm under its optimum condition (pressure ratio of 1.3) is developed and validated. Results indicated strong tip-clearance flow downstream of the turbine mid-chord. Evidence of flow separations at the turbine leading edge are also seen despite turbine operating at its optimum condition.


Author(s):  
Sungho Yoon ◽  
Eric Curtis ◽  
John Denton ◽  
John Longley

In this paper, the effect of seal clearance on the efficiency of a turbine with a shrouded rotor is compared with the effect of the tip clearance when the same turbine has an unshrouded rotor. The shrouded versus unshrouded comparison was undertaken for two turbine stage designs one having 50% reaction the other having 24% reaction. Measurements for a range of clearances, including very small clearances, showed three important phenomena. Firstly, as the clearance is reduced, there is a “break-even clearance” at which both the shrouded turbine and the unshrouded turbine have the same efficiency. If the clearance is reduced further, the unshrouded turbine performs better than the shrouded turbine, with the difference at zero clearance termed the “offset loss”. This is contrary to the traditional assumption that both shrouded and unshrouded turbines have the same efficiency at zero clearance. The physics of the break-even clearance and the offset loss are discussed. Secondly, the use of a lower reaction had the effect of reducing the tip leakage efficiency penalty for both the shrouded and the unshrouded turbines. In order to understand the effect of reaction on the tip leakage, an analytical model was used and it was found that the tip leakage efficiency penalty should be understood as the dissipated kinetic energy rather than either the tip leakage mass flow rate or the tip leakage loss coefficient. Thirdly, it was also observed that, at a fixed flow coefficient, the fractional change in the output power with clearance was approximately twice the fractional change in efficiency with clearance. This was explained by using an analytical model.


Sign in / Sign up

Export Citation Format

Share Document