Shock Isolation in Finite-Length Dimer Chains With Linear, Cubic, and Hertzian Spring Interactions

2015 ◽  
Vol 138 (1) ◽  
Author(s):  
Eric Smith ◽  
Aldo Ferri

This paper investigates the use of finite 1:1 dimer chains to mitigate the transmission of shock disturbances. Dimer chains consist of alternating light and heavy masses with interconnecting compliance. Changing the mass ratio has provided interesting results in previous research. In particular, in the case of Hertzian contacts with zero-preload, certain mass ratios have revealed minimal levels of transmitted force. This paper examines this phenomenon from the perspective of utilizing it in practical isolation systems. The zero-preload Hertzian contact case is contrasted with chains connected by linear or cubic springs. Through numerical simulations, tradeoffs are examined between displacement and transmitted force. Parametric studies are conducted to examine how isolation performance changes with mass ratio, stiffness, and different chain lengths.

Author(s):  
Eric Smith ◽  
Al Ferri

A numerical investigation to mitigate the effects of shock in finite 1:1 dimer chains is performed. Dimer chains consist of alternating light and heavy masses. Changing the mass ratio has provided interesting results in previous research. In particular, in the case of Hertzian contacts with zero-preload, certain mass ratios have revealed minimal levels of transmitted force. This paper examines this phenomena from the perspective of utilizing it in practical isolation systems. The zero-preload Hertzian contact case is contrasted with chains connected by linear or cubic springs. Through numerical simulations, tradeoffs are examined between displacement and transmitted force.


2013 ◽  
Vol 712-715 ◽  
pp. 1682-1685
Author(s):  
Zheng Lu

This paper studies the influence of system parameters to the vibration control effects of a nonlinear damper system under multi-axis excitations. The nonlinear damper system is composed of a particle damper and a primary structure. Based on numerical simulations, it is shown that: increasing the mass ratio can improve the dampers effectiveness, but only up to a certain level; applying particles with a high value of the coefficient of restitution can result in a broader range of acceptable response levels; a lightly-damped primary system can achieve a considerable reduction in its response with a small weight penalty; and that a cylindrically-shaped container provides a higher level of effectiveness than a rectangularly-shaped one.


1994 ◽  
Vol 29 (1) ◽  
pp. 43-55 ◽  
Author(s):  
M Raoof ◽  
I Kraincanic

Using theoretical parametric studies covering a wide range of cable (and wire) diameters and lay angles, the range of validity of various approaches used for analysing helical cables are critically examined. Numerical results strongly suggest that for multi-layered steel strands with small wire/cable diameter ratios, the bending and torsional stiffnesses of the individual wires may safely be ignored when calculating the 2 × 2 matrix for strand axial/torsional stiffnesses. However, such bending and torsional wire stiffnesses are shown to be first order parameters in analysing the overall axial and torsional stiffnesses of, say, seven wire stands, especially under free-fixed end conditions with respect to torsional movements. Interwire contact deformations are shown to be of great importance in evaluating the axial and torsional stiffnesses of large diameter multi-layered steel strands. Their importance diminishes as the number of wires associated with smaller diameter cables decreases. Using a modified version of a previously reported theoretical model for analysing multilayered instrumentation cables, the importance of allowing for the influence of contact deformations in compliant layers on cable overall characteristics such as axial or torsional stiffnesses is demonstrated by theoretical numerical results. In particular, non-Hertzian contact formulations are used to obtain the interlayer compliances in instrumentation cables in preference to a previously reported model employing Hertzian theory with its associated limitations.


2018 ◽  
Vol 10 (12) ◽  
pp. 168781401881719 ◽  
Author(s):  
You Wang ◽  
Xinghua Zhu ◽  
Rong Zheng ◽  
Zhe Tang ◽  
Bingbing Chen

In this study, the applications of the cubic power law damping in vessel isolation systems are investigated. The isolation performance is assessed using the force transmissibility of the vessel isolation system, which is simplified as a multiple-degree-of-freedom system with two parallel freedoms. The force transmissibilities of different working conditions faced in practice are discussed by applying the cubic power law damping on different positions of the vessel isolation system. Numerical results indicate that by adding the cubic power law damping to an appropriate position, the isolation system can not only suppress the force transmissibility over the resonant frequency region but also keep the force transmissibility unaffected at the nonresonant frequency region. Moreover, the design of the nonlinear vessel isolation system is discussed by finding the optimal nonlinear damping of the isolation system.


Author(s):  
Eric Smith ◽  
Al Ferri

This paper considers the use of a chain of translating carts or housings having internally rotating eccentric masses in order to accomplish vibration isolation. First a single degree-of-freedom system is harmonically excited to uncover the qualitative behavior of each rotating mass. The simple model is then expanded into a chain of housings, containing rotating eccentric masses, which are interconnected with springs. The internal rotating eccentric masses are damped along their circular pathway by means of linear viscous damping. Due to the lack of elastic or gravitational constraint on the rotating eccentric masses, they provide a nonlinear inertial coupling to their housings. Previous research has shown that such systems are capable of reducing shock or impulsive loading by converting some of the translational kinetic energy into rotational kinetic energy of the internal masses. This paper examines the potential for vibration isolation of a chain of such systems subjected to persistent, harmonic excitation. It is seen that the dynamics of these systems is very complicated, but that trends are observed which have implications for practical isolation systems. Using simulation studies, tradeoffs are examined between displacement and transmitted force for a range of physical parameter values.


2021 ◽  
pp. 1-28
Author(s):  
Bo Yan ◽  
Peng Ling ◽  
Yanlin Zhou ◽  
Chuan-yu Wu ◽  
Wen-Ming Zhang

Abstract This paper investigates the shock isolation characteristics of an electromagnetic bistable vibration isolator (BVI) with tunable magnetic controlled stiffness. The theoretical model of the BVI is established. The maximum acceleration ratio (MAR), maximum absolute displacement ratio (MADR) and maximum relative displacement ratio (MRDR) are introduced to evaluate the shock isolation performance of the BVI. The kinetic and potential energy are observed to further explore the performance of the BVI. The effects of the potential barrier, shape of potential well, damping ratio on the BVI are discussed compared to the linear vibration isolators (LVI). The results demonstrate that the intrawell oscillations and snap-through oscillations are determined by the excitation amplitude and duration time of main pulse. MADR and MRDR of the BVI are smaller than those of the LVI. The maximum acceleration peak amplitude of the BVI is far below that of the LVI, especially when the snap-through oscillation occurs. In brief, the proposed BVI has a better shock isolation performance than the LVI and has the potential to suppress the shock of space structures during the launch and on-orbit deploying process.


2017 ◽  
Vol 819 ◽  
pp. 678-712 ◽  
Author(s):  
Zvi Rusak ◽  
Yuxin Zhang ◽  
Harry Lee ◽  
Shixiao Wang

The dynamics of inviscid-limit, incompressible and axisymmetric swirling flows in finite-length, diverging or contracting, long circular pipes is studied through global analysis techniques and numerical simulations. The inlet flow is described by the profiles of the circumferential and axial velocity together with a fixed azimuthal vorticity while the outlet flow is characterized by a state with zero radial velocity. A mathematical model that is based on the Squire–Long equation (SLE) is formulated to identify steady-state solutions of the problem with special conditions to describe states with separation zones. The problem is then reduced to the columnar (axially-independent) SLE, with centreline and wall conditions for the solution of the outlet flow streamfunction. The solution of the columnar SLE problem gives rise to the existence of four types of solutions. The SLE problem is then solved numerically using a special procedure to capture states with vortex-breakdown or wall-separation zones. Numerical simulations based on the unsteady vorticity circulation equations are also conducted and show correlation between time-asymptotic states and steady states according to the SLE and the columnar SLE problems. The simulations also shed light on the stability of the various steady states. The uniqueness of steady-state solutions in a certain range of swirl is proven analytically and demonstrated numerically. The computed results provide the bifurcation diagrams of steady states in terms of the incoming swirl ratio and size of pipe divergence or contraction. Critical swirls for the first appearance of the various types of states are identified. The results show that pipe divergence promotes the appearance of vortex-breakdown states at lower levels of the incoming swirl while pipe contraction delays the appearance of vortex breakdown to higher levels of swirl and promotes the formation of wall-separation states.


Sign in / Sign up

Export Citation Format

Share Document