Implicit Model Equation for Hydraulic Resistance and Heat Transfer including Wall Roughness

Author(s):  
Eckart Laurien

Heat transfer to water at supercritical pressure within the core of a supercritical water reactor must be predicted accurately to ensure safe design of the reactor and prevent overheating of the fuel cladding. In the previous work (Laurien, 2012, “Semi-Analytic Prediction of Hydraulic Resistance and Heat Transfer for Pipe Flows of Water at Supercritical Pressure,” Proceedings of the International Conference on Advances in Nuclear Power Plants, ICAPP’12, Chicago, June 24–28), we have demonstrated that the wall shear stress and the wall temperature can be computed in a coupled way by a finite-difference method, taking the wall roughness into account. In the present paper, the classical two-layer model, consisting only of a laminar sublayer and a turbulent wall layer, is extended toward the same task. A set of implicit algebraic equations for the wall shear stress and the wall temperature is derived. It is consistent with the well-established Colebrook equation for rough pipes, which is included as a limiting case for constant properties. The accuracy of the prediction for strongly heated pipe flow is tested by comparison to experiments (Yamagata et al., 1972, “Forced Convective Heat Transfer to Supercritical Water Flowing in Tubes,” Int. J. Heat Mass Transfer, 15(12), 2575–2593) with supercritical water. The high accuracy and the generality of Laurien (2012) “Semi-Analytic Prediction of Hydraulic Resistance and Heat Transfer for Pipe Flows of Water at Supercritical Pressure,” Proceedings of the International Conference on Advances in Nuclear Power Plants, ICAPP’12, Chicago, June 24–28 are not achieved, but with the help of correction factors, the two-layer model has a potential for improved predictions of the hydraulic resistance and the heat transfer of pipe and channel flows at supercritical pressure.

2019 ◽  
Vol 5 (1) ◽  
pp. 67-74 ◽  
Author(s):  
Pavel L. Kirillov ◽  
Galina P. Bogoslovskaya

Existing conditions make possible obtaining information that being discussed openly by wide scientific community could help outlining or even establishing the expediency of a particular area of present and future research. Use link http://www.sciencedirect.com to learn about the topics or areas that most attract researchers from different countries. The Generation IV International Forum (GIF-IV) established in January 2000 has set a goal to improve the new generation of nuclear technologies in the following areas: stability, safety and reliability, economic competitiveness, proliferation resistance and physical protection. The purpose of the present publication is to prepare a discussion of one of the directions of development of fourth-generation NPPs, the groundwork for which has already been laid in thermal power engineering in various countries. The number of papers published annually on this topic is the largest among other similar topics dedicated to nuclear power plants of the fourth generation. Judging from the operating experience of existing nuclear power plants using water as a coolant, it can be ascertained that the tendency of building water-cooled nuclear power plants will remain during the next 30 to 50 years. During the present stage the task in the development of alternative types of reactors will be limited to demonstration of their performance and acceptability for future power engineering and the society. The project of supercritical water-cooled reactor is based on the operating experience of VVER, PWR, BWR reactors (more than 14,000 reactor-years); many years of experience accumulated in operating fossil thermal power plants (more than 400 power units; 20,000 years of operation of power units) using supercritical (25 MPa, 540°C) and super-supercritical (35–37 MPa, 620–700°C) water steam. In Russia more than 140 supercritical pressure units are currently in operation. Numerical calculation and design of supercritical water-cooled reactor (similarly to BR-10 reactor) will allow not only training personnel for future development of this technology, but will also help revealing the most difficult points requiring experimental confirmation with application of independent test facilities, as well as formulating the plan of first priority experimental studies. Knowledge accumulated over the last 10 years in the world allows the following: further specifying the already developed concept; developing a plan of specific priority studies; compiling task order for designing small-power pilot VVER SKP-30 reactor (30 MW-th). The scope of problems that are to be solved to substantiate VVER-SCP reactor and commence designing an experimental reactor with thermal capacity of 30 MW is the same as that in developing any type of nuclear reactor: physics of the reactor core; material related matters (primarily concerned with the reactor pressure vessel, fuel, and fuel rod cladding); thermal hydraulics of rod bundles in the near- and supercritical areas; water chemistry at supercritical pressure; corrosion of materials, development of safety systems. Research must be carried out both in static conditions and under irradiation. The absence in Russia during the extended time period of approved program with allocation of appropriate funding and preservation of the existing status during the coming two or three years will lead to the situation when Russia will be hopelessly lagging behind in the development of SCWR technology.


Author(s):  
Marija Miletic ◽  
Wargha Peiman ◽  
Amjad Farah ◽  
Jeffrey Samuel ◽  
Alexey Dragunov

Nuclear power becomes more and more important in many countries worldwide as a basis for current and future electrical-energy generation. The largest group of operating Nuclear Power Plants (NPPs) equipped with water-cooled reactors (96% of all NPPs) have gross thermal efficiencies ranging from 30% and up to 36%. Such relatively low values of thermal efficiencies are due to lower pressures/temperatures at the inlet to a turbine (4.5–7.8 MPa / 257–293°C). However, modern combined-cycle power plants (Brayton gas-turbine cycle and subcritical-pressure steam Rankine cycle, fuel – natural gas) and supercritical-pressure coal-fired power plants have reached gross thermal efficiencies of 62% and 55%, respectively. Therefore, next generation or Generation IV NPPs with water-cooled reactors should have thermal efficiencies as close as possible to those of modern thermal power plants. A significant increase in thermal efficiencies of water-cooled NPPs can be possible only due to increasing turbine inlet parameters above the critical point of water, i.e., SuperCritical Water-cooled Reactors (SCWRs) have to be designed. This path of the thermal-efficiency increasing is considered as a conventional way through which coal-fired power plants gone more than 50 years ago. Therefore, an objective of the current paper is a study on neutronics and thermalhydraulics characteristics of a generic 1200-MWel Pressure-Channel (PCh) SCWR. Standard neutronics codes DRAGON and DONJON have been coupled with a new thermalhydraulic code developed based on the latest empirical heat-transfer correlation, which allowed for more accurate estimation of basic characteristics of a PCh SCWR. In addition, the CFD Fluent code has been used for better understanding of specifics of heat transfer in supercritical water. Future studies will be dedicated to materials and fuels testing in an in-pile supercritical-water loop and developing passive-safety systems.


2015 ◽  
Vol 1 (1) ◽  
Author(s):  
Marija Miletic ◽  
Wargha Peiman ◽  
Amjad Farah ◽  
Jeffrey Samuel ◽  
Alexey Dragunov ◽  
...  

Nuclear power becomes more and more important in many countries worldwide as a basis for current and future electrical energy generation. The largest group of operating nuclear power plants (NPPs) equipped with water-cooled reactors (96% of all NPPs) has gross thermal efficiencies ranging from 30–36%. Such relatively low values of thermal efficiencies are due to lower pressures/temperatures at the inlet to a turbine (4.5–7.8  MPa/257–293°C). However, modern combined-cycle power plants (Brayton gas-turbine cycle and subcritical-pressure steam Rankine cycle, fueled by natural gas) and supercritical-pressure coal-fired power plants have reached gross thermal efficiencies of 62% and 55%, respectively. Therefore, next generation or Generation IV NPPs with water-cooled reactors should have thermal efficiencies as close as possible to those of modern thermal power plants. A significant increase in thermal efficiencies of water-cooled NPPs can be possible only due to increasing turbine inlet parameters above the critical point of water, i.e., supercritical water-cooled reactors (SCWRs) have to be designed. This path of increasing thermal efficiency is considered as a conventional way that coal-fired power plants followed more than 50 years ago. Therefore, an objective of the current paper is a study on neutronics and thermalhydraulics characteristics of a generic 1200-MWel pressure-channel (PCh) SCWR. Standard neutronics codes DRAGON and DONJON have been coupled with a new thermalhydraulics code developed based on the latest empirical heat-transfer correlation, which allowed for more accurate estimation of basic characteristics of a PCh SCWR. In addition, the computational fluid dynamics (CFD) Fluent code has been used for better understanding of the specifics of heat transfer in supercritical water. Future studies will be dedicated to materials and fuels testing in an in-pile supercritical water loop and developing passive safety systems.


2021 ◽  
Vol 7 (4) ◽  
pp. 311-318
Author(s):  
Artavazd M. Sujyan ◽  
Viktor I. Deev ◽  
Vladimir S. Kharitonov

The paper presents a review of modern studies on the potential types of coolant flow instabilities in the supercritical water reactor core. These instabilities have a negative impact on the operational safety of nuclear power plants. Despite the impressive number of computational works devoted to this topic, there still remain unresolved problems. The main disadvantages of the models are associated with the use of one simulated channel instead of a system of two or more parallel channels, the lack consideration for neutronic feedbacks, and the problem of choosing the design ratios for the heat transfer coefficient and hydraulic resistance coefficient under conditions of supercritical water flow. For this reason, it was decided to conduct an analysis that will make it possible to highlight the indicated problems and, on their basis, to formulate general requirements for a model of a nuclear reactor with a light-water supercritical pressure coolant. Consideration is also given to the features of the coolant flow stability in the supercritical water reactor core. In conclusion, the authors note the importance of further computational work using complex models of neutronic thermal-hydraulic stability built on the basis of modern achievements in the field of neutron physics and thermal physics.


Author(s):  
Igor L. Pioro

Supercritical Fluids (SCFs) have unique thermophyscial properties and heat-transfer characteristics, which make them very attractive for use in power industry. In this chapter, specifics of thermophysical properties and heat transfer of SCFs such as water, carbon dioxide, and helium are considered and discussed. Also, particularities of heat transfer at Supercritical Pressures (SCPs) are presented, and the most accurate heat-transfer correlations are listed. Supercritical Water (SCW) is widely used as the working fluid in the SCP Rankine “steam”-turbine cycle in fossil-fuel thermal power plants. This increase in thermal efficiency is possible by application of high-temperature reactors and power cycles. Currently, six concepts of Generation-IV reactors are being developed, with coolant outlet temperatures of 500°C~1000°C. SCFs will be used as coolants (helium in GFRs and VHTRs, and SCW in SCWRs) and/or working fluids in power cycles (helium, mixture of nitrogen (80%) and helium (20%), nitrogen and carbon dioxide in Brayton gas-turbine cycles, and SCW/“steam” in Rankine cycle).


Author(s):  
Alberto Sáez-Maderuelo ◽  
María Luisa Ruiz-Lorenzo ◽  
Francisco Javier Perosanz ◽  
Patricie Halodová ◽  
Jan Prochazka ◽  
...  

Abstract Alloy 690, which was designed as a replacement for the Alloy 600, is widely used in the nuclear industry due to its optimum behavior to stress corrosion cracking (SCC) under nuclear reactor operating conditions. Because of this superior resistance, alloy 690 has been proposed as a candidate structural material for the Supercritical Water Reactor (SCWR), which is one of the designs of the next generation of nuclear power plants (Gen IV). In spite of this, striking results were found [1] when alloy 690 was tested without intergranular carbides. These results showed that, contrary to expectations, the crack growth rate is lower in samples without intergranular carbides than in samples with intergranular carbides. Therefore, the role of the carbides in the corrosion behavior of Alloy 690 is not yet well understood. Considering these observations, the aim of this work is to study the effect of intergranular carbides in the oxidation behavior (as a preliminary stage of degenerative processes SCC) of Alloy 690 in supercritical water (SCW) at two temperatures: 400 °C and 500 °C and 25 MPa. Oxide layers of selected specimens were studied by different techniques like Scanning Electron Microscope (SEM) and Auger Electron Spectroscopy (AES).


Author(s):  
R. B. Duffey ◽  
I. Pioro ◽  
X. Zhou ◽  
U. Zirn ◽  
S. Kuran ◽  
...  

One of the six Generation IV nuclear reactor concepts is a SuperCritical Water-cooled nuclear Reactor (SCWR), which is currently under development. The main objectives for developing and utilizing SCWRs are to increase the thermal efficiency of Nuclear Power Plants (NPPs), to decrease electrical energy costs, and possibility for co-generation, including hydrogen generation. Atomic Energy of Canada Limited (AECL) and Research and Development Institute of Power Engineering (RDIPE or NIKIET in Russian abbreviations) are currently developing pressure-tube SCWR concepts. The targeted steam parameters at the reactor outlet are approximately 25 MPa and 625°C. This paper presents a survey on modern SuperCritical (SC) steam turbine technology and a study on potential steam cycles for the SCWR plants. The survey reveals that by the time the Gen IV SCWRs are market-ready, the required steam turbine technology will be well proven. Three potential steam cycles in an SCWR plant are presented: a dual-cycle with steam reheat, a direct cycle with steam reheat, and a direct cycle with a Moisture Separator and Reheater (MSR). System thermal-performance simulations have been performed to determine the overall cycle efficiency of the proposed cycles. The results show that the direct cycle with steam reheat has the highest efficiency. The direct cycle with MSR is an alternative option, which will simplify the reactor design at the penalty of a slightly lower cycle efficiency.


Sign in / Sign up

Export Citation Format

Share Document