Thermomechanical Stress in Cryopreservation Via Vitrification With Nanoparticle Heating as a Stress-Moderating Effect

2015 ◽  
Vol 138 (1) ◽  
Author(s):  
David P. Eisenberg ◽  
John C. Bischof ◽  
Yoed Rabin

This study focuses on thermomechanical effects in cryopreservation associated with a novel approach of volumetric heating by means on nanoparticles in an alternating electromagnetic field. This approach is studied for the application of cryopreservation by vitrification, where the crystalline phase is completely avoided—the cornerstone of cryoinjury. Vitrification can be achieved by quickly cooling the material to cryogenic storage, where ice cannot form. Vitrification can be maintained at the end of the cryogenic protocol by quickly rewarming the material back to room temperature. The magnitude of the rewarming rates necessary to maintain vitrification is much higher than the magnitude of the cooling rates that are required to achieve it in the first place. The most common approach to achieve the required cooling and rewarming rates is by exposing the specimen's surface to a temperature-controlled environment. Due to the underlying principles of heat transfer, there is a size limit in the case of surface heating beyond which crystallization cannot be prevented at the center of the specimen. Furthermore, due to the underlying principles of solid mechanics, there is a size limit beyond which thermal expansion in the specimen can lead to structural damage and fractures. Volumetric heating during the rewarming phase of the cryogenic protocol can alleviate these size limitations. This study suggests that volumetric heating can reduce thermomechanical stress, when combined with an appropriate design of the thermal protocol. Without such design, this study suggests that the level of stress may still lead to structural damage even when volumetric heating is applied. This study proposes strategies to harness nanoparticles heating in order to reduce thermomechanical stress in cryopreservation by vitrification.

2021 ◽  
Author(s):  
Purva Joshi ◽  
Lili Ehrlich ◽  
Zhe Gao ◽  
John Bischof ◽  
Yoed Rabin

Abstract This study explores thermal design aspects of nanowarming-assisted recovery of the heart from indefinite cryogenic storage, where nanowarming is the volumetric heating effect of ferromagnetic nanoparticles excited by a radio-frequency electromagnet field. This study uses computation means, while focusing on the human heart and the rat heart models. The underlying nanoparticle loading characteristics are adopted from a recent, proof-of-concept experimental study. While uniformly distributed nanoparticles can lead to uniform rewarming, and thereby minimize adverse effects associated with ice crystallization and thermomechanical stress, the combined effects of heart anatomy and nanoparticle loading limitations present practical challenges which this study comes to address. Results of this study demonstrate that under less-than-ideal conditions, nonuniform nanoparticles warming may lead to a subcritical rewarming rate in some parts of the domain, excessive heating in others, and increased exposure potential to cryoprotective agents (CPAs) toxicity. Nonetheless, results of this study also demonstrate that computerized planning of the cryopreservation protocol and container design can help mitigate the associated adverse effects, with examples relating to adjusting the CPA and/or nanoparticle concentration, and selecting heart container geometry and size. In conclusion, nanowarming provides superior conditions for organ recovery from cryogenic storage, which comes with an elevated complexity of protocol planning and optimization.


2020 ◽  
Vol 7 (2) ◽  
pp. 46 ◽  
Author(s):  
Jann Harberts ◽  
Max Kusch ◽  
John O’Sullivan ◽  
Robert Zierold ◽  
Robert H. Blick

Though patch clamping at room temperature is a widely disseminated standard procedure in the electrophysiological community, it does not represent the biological system in mammals at around 37 °C. In order to better mimic the natural environment in electrophysiological studies, we present a custom-built, temperature-controlled patch clamp platform for upright microscopes, which can easily be adapted to any upright patch clamp setup independently, whether commercially available or home built. Our setup can both cool and heat the platform having only small temperature variations of less than 0.5 °C. We demonstrate our setup with patch clamp measurements at 36 °C on Jurkat T lymphocytes and human induced pluripotent stem cell-derived neurons. Passive membrane parameters and characteristic electrophysiological properties, such as the gating properties of voltage-gated ion channels and the firing of action potentials, are compared to measurements at room temperature. We observe that many processes that are not explicitly considered as temperature dependent show changes with temperature. Thus, we believe in the need of a temperature control in patch clamp measurements if improved physiological conditions are required. Furthermore, we advise researchers to only compare electrophysiological results directly that have been measured at similar temperatures since small variations in cellular properties might be caused by temperature alterations.


Author(s):  
Ramin Bighamian ◽  
Hamid Reza Mirdamadi ◽  
Jin-Oh Hahn

This paper presents a novel approach to damage identification in a class of collocated multi-input multi-output structural systems. In the proposed approach, damage is identified via the structural Markov parameters obtained from a system identification procedure, which is in turn exploited to localize and quantify damage by evaluating relative changes occurring in the mass and stiffness matrices associated with the structural system. To this aim, an explicit relationship between structural Markov parameters versus mass and stiffness matrices is developed. The main strengths of the proposed approach are that it is capable of quantitatively identifying the occurrence of multiple damages associated with both mass and stiffness characteristics in the structural system, and it is computationally efficient in that it is solely based on the structural Markov parameters but does not necessitate costly calculations related to natural frequencies and mode shapes, making it highly attractive for structural damage detection and health monitoring applications. Numerical examples are provided to demonstrate the validity and effectiveness of the proposed approach.


Nanomaterials ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 1006
Author(s):  
Hongqiang Li ◽  
Jianing Wang ◽  
Jinjun Bai ◽  
Shanshan Zhang ◽  
Sai Zhang ◽  
...  

The realization of a fully integrated group IV electrically driven laser at room temperature is an essential issue to be solved. We introduced a novel group IV side-emitting laser at a wavelength of 1550 nm based on a 3-layer Ge/Si quantum well (QW). By designing this scheme, we showed that the structural, electronic, and optical properties are excited for lasing at 1550 nm. The preliminary results show that the device can produce a good light spot shape convenient for direct coupling with the waveguide and single-mode light emission. The laser luminous power can reach up to 2.32 mW at a wavelength of 1550 nm with a 300-mA current. Moreover, at room temperature (300 K), the laser can maintain maximum light power and an ideal wavelength (1550 nm). Thus, this study provides a novel approach to reliable, efficient electrically pumped silicon-based lasers.


Polymer ◽  
2018 ◽  
Vol 135 ◽  
pp. 50-60 ◽  
Author(s):  
Jonas Alin ◽  
Nico Setiawan ◽  
Matthew Defrese ◽  
James DiNunzio ◽  
Hang Lau ◽  
...  

2020 ◽  
Vol 8 (36) ◽  
pp. 12457-12469
Author(s):  
Miguel Algueró ◽  
Miguel Pérez-Cerdán ◽  
Rafael P. del Real ◽  
Jesús Ricote ◽  
Alicia Castro

Aurivillius oxides with general formula (Bi2O2)(Am−1BmO3m+1) are being extensively investigated for room-temperature multiferroism and magnetoelectric coupling.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3529 ◽  
Author(s):  
Rabih Younes ◽  
Mark Jones ◽  
Thomas Martin

Most activity classifiers focus on recognizing application-specific activities that are mostly performed in a scripted manner, where there is very little room for variation within the activity. These classifiers are mainly good at recognizing short scripted activities that are performed in a specific way. In reality, especially when considering daily activities, humans perform complex activities in a variety of ways. In this work, we aim to make activity recognition more practical by proposing a novel approach to recognize complex heterogeneous activities that could be performed in a wide variety of ways. We collect data from 15 subjects performing eight complex activities and test our approach while analyzing it from different aspects. The results show the validity of our approach. They also show how it performs better than the state-of-the-art approaches that tried to recognize the same activities in a more controlled environment.


Sign in / Sign up

Export Citation Format

Share Document