Experimental Analysis of Friction and Wear of Laser Microtextured Surface Filled With Composite Solid Lubricant and Lubricated With Grease on Sliding Surfaces

2017 ◽  
Vol 139 (2) ◽  
Author(s):  
Xijun Hua ◽  
Julius Caesar Puoza ◽  
Jianguo Sun ◽  
Peiyun Zhang ◽  
Jinghu Ji ◽  
...  

Experimental studies of friction and wear on textured surfaces filled with composite solid lubricant and lubricated with grease were conducted on a sliding plain bearing to enhance the working performance and lifetime under different conditions. Circular microdimples of different diameters were fabricated on GCr15 bearing steel specimens using the semiconductor sound and light pumped Nd:YAG laser machining equipment. Ring-on-ring tribological test configuration with GCr15 tribopairs under a combined non-Newtonian lubrication of grease and composite lubricant was performed. The results showed that the surface textures on specimen GCr15 bearing steel material filled composite solid lubricant and lubricated with grease (TLG), reduced the friction by 27%, 46%, and 75% of the grease only (TG), solid lubricant only (TL), and nonlubricated (T) specimens, respectively. The textured specimen with dimple diameter of 109 μm lowered the maximum coefficient of friction by 38% and enhanced the antiwear properties of GCr15 bearing steel material remarkably. This indicated that grease has great potential in promoting service life and working performance of sliding plain bearing when combined with composite solid lubricant in a laser-textured surface. It is therefore beneficial for applications in the machinery and automotive components industries in saving energy and reducing CO2 emission.

2018 ◽  
Vol 70 (2) ◽  
pp. 371-384 ◽  
Author(s):  
Xijun Hua ◽  
Xuan Xie ◽  
Bifeng Yin ◽  
Peiyun Zhang ◽  
Jinghu Ji ◽  
...  

Purpose This paper aims to find out the tribological performance and self-lubricating mechanism of the laser-textured surface filled with solid lubricant in rolling friction pair. Design/methodology/approach The textures on the surfaces of GCr15 bearing steel were produced by acousto-optic Q diode-pumped yttrium aluminum garnet laser with the technology of “single pulse one time, repeating at intervals” and filled with composite solid lubricant. The tribology tests were conducted on the MMW-1A universal friction and wear testing machine. Findings It was found that the solid-lubricated micro-textured surface can reduce the friction coefficient effectively. The MoS2/PI composite solid lubricant works better than the single MoS2 solid lubricant, and the ratio of PI/MoS2 + PI at 20 per cent is the best recipe. The friction coefficient of the sample surfaces decreases first and then increases with the increase in texture densities, and a texture density of 19.6 per cent has the best effect on friction reduction. The friction coefficient of the textured surfaces gradually decreases with the increase in both rational speed and load. For the same texture density, the friction coefficient of textured surfaces decreases slightly with the increase in diameter. Furthermore, the mechanism of “rolling-extrusion-accumulation” occurred on the textured surface can collect the solid lubricant, thereby, improve the effect of lubricating and anti-friction. Originality/value The results of the experimental studies demonstrated the application prospect of laser surfaces texturing combined with solid lubricant in rolling friction pair.


Author(s):  
Xin Tong ◽  
Shucai Yang ◽  
Xianli Liu ◽  
Weiwei Liu ◽  
Chunsheng He

In the research regarding laser-processed micro-textured carbide tool surfaces, there remains a lack of research on the relationship between micro-textured preparation processes and the degree of fatigue wear experienced by micro-textured surfaces. To study the effect of a laser-textured surface on the friction and wear properties of friction pairs, it first of all conducted friction and wear tests to obtain optimal processing parameters. By using a scanning electron microscope, the fatigue wear mechanism for a micro-textured surface was observed. Experimental results based on fatigue wear theory show that a micro-textured surface phase has better fatigue resistance than a smooth surface. Under the same friction conditions and selected test parameters, a micro-textured surface phase can reduce the maximum fatigue and friction wear of a smooth surface by 38.4%. This study provides a theoretical basis and source of reference for the rational formulation of micro-texture parameters and improvements in the performance of micro-textures during cutting processes.


2012 ◽  
Vol 562-564 ◽  
pp. 350-354
Author(s):  
Jian Hua Fang ◽  
Jiu Wang ◽  
Jiang Wu ◽  
Bo Shui Chen ◽  
Ling Dong

A N-containing additive, amide type modified rapeseed oil (named as NRO), was prepared by chemical modification of rapeseed oil and characterized by infrared spectrum The friction and wear performances of AZ91D magnesium alloy against GCr15 bearing steel under the lubrication of rapeseed oil formulated with NRO were evaluated on a SRV tribotester. The topographies and the chemical species of the worn surfaces of magnesium alloy were analyzed by a scanning electron microscope (SEM) and an X-ray photoelectron spectroscope (XPS), respectively. The results indicated that the friction and wear of the magnesium alloy—steel tribomates could be effectively reduced by formulating NRO into rapeseed oil lubricant. The friction coefficients and the wear volumes of magnesium alloy decreased with increasing contents of NRO. The surface lubricated with NRO-doped rapeseed oil was characterized by less wear as compared with that lubricated with neat rapeseed oil. The enhanced anti-wear and friction-reducing abilities of rapeseed oil by NRO in the lubrication of magnesium alloy against steel were ascribed to the formation of a composite boundary lubrication film due to the strong adsorption of NRO and rapeseed oil onto the lubricated surfaces and their tribochemical reactions with magnesium alloy.


2016 ◽  
Vol 138 (3) ◽  
Author(s):  
Xijun Hua ◽  
Jianguo Sun ◽  
Peiyun Zhang ◽  
Kai Liu ◽  
Rong Wang ◽  
...  

A combination technology of the solid lubricant and the laser surface texturing (LST) can significantly improve the tribological properties of friction pairs. The plate sample was textured by fiber laser and composite lubricant of polyimide (PI) and molybdenum disulfide (MoS2) powders were filled in the microdimples. Sliding friction performances of micron-sized composite lubricant and nano-sized composite lubricant were investigated by ring-plate tribometer at temperatures ranging from room temperature (RT) to 400 °C. On the one hand, the results of the micron-sized composite lubricant show that the friction coefficient of the textured surface filled with composite lubricant (TS) exhibits the lowest level and the highest stability compared to a textured surface without solid lubrication, smooth surface without lubrication, smooth surface burnished with a layer of composite solid lubricant. The better dimple density range is 35–46%. The friction coefficients of the sample surface filled with micron-composite solid lubricant with the texture density of 35% are maintained at a low level (about 0.1) at temperatures ranging from RT to 300 °C. On the other hand, the results of the nano-sized composite lubricant show that these friction properties are better than those of MoS2-PI micron-sized composite. The friction coefficients of MoS2-PI-CNTs nano-sized composite solid lubricant are lower than those of the MoS2-PI composite lubricant at temperatures ranging from RT to 400 °C. In addition, the possible mechanisms involving the synergetic effect of the surface texture and the solid lubricant are discussed in the present work.


2018 ◽  
Vol 159 ◽  
pp. 02017
Author(s):  
Zhouyong Hou ◽  
Tomomi Honda

For improving automobile fuel efficiency, the internal combustion engines must be required to reduce the friction and wear. Changing viscosity of lubricant and surface pressure could succeed, but the seizure is easy to happen in engines. However, the surface texture can solve those problems. The running-in behavior affects friction and wear on whole combustion engines. If the running-in is not carefully designed, catastrophic accident can happen. This experiment investigates that the running-in behavior is influenced by textured surfaces and the tested materials are the cast iron and the different area ratio of dimple of aluminum alloy combination. The friction coefficient and the number and size of wear particles are measured by the friction sensor and particle counter. After the tests, the worn surfaces are measured through using surface profile measurement systems, and some significant phenomena are observed and analyzed. The textured surface verifies good consequence and tribological advantages.


2019 ◽  
Vol 141 (12) ◽  
Author(s):  
Chunxing Gu ◽  
Xianghui Meng ◽  
Shuwen Wang ◽  
Xiaohong Ding

Abstract In order to find the effects of surface topography on the tribological properties of the rough textured surfaces, an improved mixed lubrication model allowing specifying the standard deviation, the skewness, and the kurtosis was developed. In this model, by considering the non-Gaussian properties of rough surfaces, an improved average flow model was combined with a modified statistical elastoplastic asperity contact model. The performances of the slider bearings with two arrays of anisotropic textures were studied in terms of Stribeck curves. It appears that the tribological properties of the anisotropic textures are sensitive to the sliding direction. Meanwhile, the surfaces with more negative skewness or the lower kurtosis can obtain better tribological performances related to friction and wear.


2021 ◽  
Vol 324 ◽  
pp. 35-42
Author(s):  
Dong Yue Wang ◽  
Rong Chang Xu ◽  
Dian Xiu Xia ◽  
Shou Ren Wang ◽  
Ying Chao Pei ◽  
...  

The effects of temperature on the friction and wear properties of GCr15 were studied by using a RETC multifunctional friction and wear testing machine. The microstructure characterization of the worn surface of the experimental steel was studied by means of metallographic microscope (OM), white light interferometer, secondary electron image (SEI) and back scattered electron image (BEI).The results show that the wear resistance of GCr15 bearing steel at room temperature is better than that at 100°C, 150°C and 200°C. At room temperature, the main wear forms of GCr15 are adhesion wear and fatigue wear. However, at 100°C, 150°C, 200°C, the friction coefficient and oxidation degree in the wear zone first increase and then decrease with the increase of temperature, and the wear form is mainly oxidized wear, accompanied by abrasive wear.


2014 ◽  
Vol 538 ◽  
pp. 19-23 ◽  
Author(s):  
Jian Hua Fang ◽  
Dong Yong Xia ◽  
Bo Shui Chen ◽  
Jiang Wu ◽  
Jiu Wang

A S-containing additive, sulfuration modified soybean oil (named as SSO), was prepared by chemical modification of soybean oil with sulfur compounds. The friction and wear performances of AZ91D magnesium alloy against GCr15 bearing steel under the lubrication of rapeseed oil formulated with SSO were evaluated on a SRV tribotester. The topographies and the chemical species of the worn surfaces of magnesium alloy were analyzed by a scanning electron microscope (SEM) and an X-ray photoelectron spectroscope (XPS), respectively. The results indicated that the friction and wear of the magnesium alloy-steel tribomates could be effectively reduced by formulating SSO into rapeseed oil lubricant. The friction coefficients and the wear volumes of magnesium alloy decreased with increasing contents of SSO. The surface lubricated with SSO-doped rapeseed oil was characterized by less wear as compared with that lubricated with neat rapeseed oil. The enhanced anti-wear and friction-reducing abilities of rapeseed oil by SSO in the lubrication of magnesium alloy against steel were ascribed to the formation of a composite boundary lubrication film due to the strong adsorption of SSO and rapeseed oil onto the lubricated surfaces and their tribochemical reactions with magnesium alloy.


Sign in / Sign up

Export Citation Format

Share Document