Aggressive Spiral Toolpaths for Pocket Machining Based on Medial Axis Transformation

Author(s):  
Nuodi Huang ◽  
Roby Lynn ◽  
Thomas Kurfess

High-speed machine tools typically provide high spindle speeds and feedrates to achieve an effective material removal rate (MRR). However, it is not possible to realize the full extent of their high-speed capabilities due to the sharp corners of toolpaths which are introduced by conventional machining strategies, such as contour- and direction-parallel toolpaths. To address this limitation, spiral toolpaths that can reduce the magnitude of sudden direction changes have been developed in previous researches. Nevertheless, for some pockets, the average radial cutting width is significantly decreased while the total length of the toolpath is significantly increased as compared to contour- and direction-parallel toolpath. In this situation, spiral toolpath may take more machining time. To overcome these drawbacks, an aggressive spiral toolpath generation method based on the medial axis (MA) transformation is proposed in machining pocket without islands inside, which refers to no additional material inside the counter. The salient feature of this work is that it integrates the advantages of both conventional contour-parallel machining strategy and the existing spiral toolpath machining strategy. The cutting width at each MA point is determined based on the diameter of the locally inscribed circle (LIC) of the MA point and the topological structure of MA. A distance-constrained contour determination algorithm is utilized to calculate the toolpath for each pass. Finally, a circular arc transition strategy is used to transform all the isolated passes into a spiral toolpath. Experiments are conducted to show the effectiveness of the proposed method.

2019 ◽  
Vol 18 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Mochammad Chaeron ◽  
Budi Saputro Wahyuaji ◽  
Apriani Soepardi

The machining strategy is one of the parameters which practically influences the time of the different manufacturing geometric forms. The machining time directly relates to the machining efficiency of the tool paths. In area milling machining, there are two main types of tool path strategies: a direction-parallel milling and contour-parallel milling. Then direction-parallel milling is simple compared with a contour-parallel strategy. This paper proposes a new model of the direction-parallel machining strategy for triangular pockets to reduce the tool path length. The authors develop an analytical model by appending additional the tool path segments to the basis tool path for cutting un-machined area or scallops, which remained along the boundary. To validate its results, the researchers have compared them to the existing model found in the literature. For illustrating the computation of this model, the study includes two numerical examples. The results show that the proposed analytic direction-parallel model can reduce the total length of machining. Thus, it can take a shorter time for milling machining.


Author(s):  
David Manuel Ochoa González ◽  
Joao Carlos Espindola Ferreira

Traditional (direction-parallel and contour-parallel) and non-traditional (trochoidal) tool paths are generated by specialized geometric algorithms based on the pocket shape and various parameters. However, the tool paths generated with those methods do not usually consider the required machining power. In this work, a method for generating power-aware tool paths is presented, which uses the power consumption estimation for the calculation of the tool path. A virtual milling system was developed to integrate with the tool path generation algorithm in order to obtain tool paths with precise power requirement control. The virtual milling system and the tests used to calibrate it are described within this article, as well as the proposed tool path generation algorithm. Results from machining a test pocket are presented, including the real and the estimated power requirements. Those results were compared with a contour-parallel tool path strategy, which has a shorter machining time but has higher in-process power consumption.


Author(s):  
Ke Xu ◽  
Baohai Wu ◽  
Zhaoyu Li ◽  
Kai Tang

Trochoidal (TR) tool paths have been a popular means in high-speed machining for slot cutting, owing to its unique way of cyclically advancing the tool to avoid the situation of a full tool engagement angle suffered by the conventional type of slot cutting. However, advantageous in lowering the tool engagement angle, they sacrifice in machining efficiency—to limit the tool engagement angle, the step distance has to be carefully controlled, thus resulting in a much longer total machining time. Toward the objective of improving the machining efficiency, in this paper, we propose a new type of TR tool path for milling an arbitrary curved slot. For our new type of TR tool path, within each TR cycle, rather than moving circularly, the tool moves in a particular way such that the material removal rate is maximized while the given maximum engagement angle is fully respected. While this type of TR tool path works perfectly only for circular slots (including straight ones), by means of an adaptive decomposition and then a novel iso-arc-length mapping scheme, it is successfully applied to any general arbitrarily curved slot. Our experiments have confirmed that, when compared with the conventional TR tool paths, the proposed new type of TR tool path is able to significantly reduce the total machining time by as much as 25%, without sacrificing the tool wear.


2020 ◽  
Vol 38 (8A) ◽  
pp. 1226-1235
Author(s):  
Safa R. Fadhil ◽  
Shukry. H. Aghdeab

Electrical Discharge Machining (EDM) is extensively used to manufacture different conductive materials, including difficult to machine materials with intricate profiles. Powder Mixed Electro-Discharge Machining (PMEDM) is a modern innovation in promoting the capabilities of conventional EDM. In this process, suitable materials in fine powder form are mixed in the dielectric fluid. An equal percentage of graphite and silicon carbide powders have been mixed together with the transformer oil and used as the dielectric media in this work. The aim of this study is to investigate the effect of some process parameters such as peak current, pulse-on time, and powder concentration of machining High-speed steel (HSS)/(M2) on the material removal rate (MRR), tool wear rate (TWR) and the surface roughness (Ra). Experiments have been designed and analyzed using Response Surface Methodology (RSM) approach by adopting a face-centered central composite design (FCCD). It is found that added graphite-silicon carbide mixing powder to the dielectric fluid enhanced the MRR and Ra as well as reduced the TWR at various conditions. Maximum MRR was (0.492 g/min) obtained at a peak current of (24 A), pulse on (100 µs), and powder concentration (10 g/l), minimum TWR was (0.00126 g/min) at (10 A, 100 µs, and 10 g/l), and better Ra was (3.51 µm) at (10 A, 50 µs, and 10 g/l).


2020 ◽  
Vol 38 (9A) ◽  
pp. 1352-1358
Author(s):  
Saad K. Shather ◽  
Abbas A. Ibrahim ◽  
Zainab H. Mohsein ◽  
Omar H. Hassoon

Discharge Machining is a non-traditional machining technique and usually applied for hard metals and complex shapes that difficult to machining in the traditional cutting process. This process depends on different parameters that can affect the material removal rate and surface roughness. The electrode material is one of the important parameters in Electro –Discharge Machining (EDM). In this paper, the experimental work carried out by using a composite material electrode and the workpiece material from a high-speed steel plate. The cutting conditions: current (10 Amps, 12 Amps, 14 Amps), pulse on time (100 µs, 150 µs, 200 µs), pulse off time 25 µs, casting technique has been carried out to prepare the composite electrodes copper-sliver. The experimental results showed that Copper-Sliver (weight ratio70:30) gives better results than commonly electrode copper, Material Removal Rate (MRR) Copper-Sliver composite electrode reach to 0.225 gm/min higher than the pure Copper electrode. The lower value of the tool wear rate achieved with the composite electrode is 0.0001 gm/min. The surface roughness of the workpiece improved with a composite electrode compared with the pure electrode.


2014 ◽  
Vol 590 ◽  
pp. 294-298
Author(s):  
Pichai Janmanee ◽  
Somchai Wonthaisong ◽  
Dollathum Araganont

In this study, effect of machining parameters and wear mechanism in milling process of mold steel AISI-P20 and AISI-1050, using 10 mm twin flute type end mill diameter. The experimental results found that characteristics of milling surfaces and wear of the mill end were directly influenced by changes of parameters for all test conditions. As a result, the quality of milling surfaces also changed. However, mould steels which had the good quality surface is AISI-1050, with roughnesses of 2.120 μm. Quality milling surfaces were milled by using the most suitable parameter feed rate of 45 mm/min, a spindle speed of 637 rpm and a cut depth level of 3 mm, for both grades. Moreover, material removal rate and duration of the milling process, the milling end mills affect wear of the edge in every bite when the feed rate is low, high speed and level depth of cut at least. It was found that limited wear less will affect the surface roughness (Ra) represents the good quality surface.


2010 ◽  
Vol 447-448 ◽  
pp. 193-197
Author(s):  
Wei Qiang Gao ◽  
Qiu Sheng Yan ◽  
Yi Liu ◽  
Jia Bin Lu ◽  
Ling Ye Kong

Electro-magneto-rheological (EMR) fluids, which exhibit Newtonian behavior in the absence of a magnetic field, are abruptly transformed within milliseconds into a Bingham plastic under an applied magnetic field, called the EMR effect. Based on this effect, the particle-dispersed EMR fluid is used as a special instantaneous bond to cohere abrasive particles and magnetic particles together so as to form a dynamical, flexible tiny-grinding wheel to machine micro-groove on the surface of optical glass. Experiments were conducted to reveal the effects of process parameters, such as the feed rate of the horizontal worktable, feeding of the Z axis, machining time and machining gap, on material removal rate of glass. The results indicate that the feed rate of the worktable at horizontal direction has less effect on material removal rate, which shows a fluctuation phenomenon within a certain range. The feed rate of the Z axis directly influences the machining gap and leads to a remarkable change on material removal rate. Larger material removal rate can be obtained when the feeding frequency of Z direction is one time per processing. With the increase of rotation speed of the tool, material removal rate increases firstly and decreases afterwards, and it gets the maximum value with the rotation speed of 4800 rev/min. The machining time is directly proportional to material removal amount, but inversely proportional to material removal rate. Furthermore, material removal rate decreases with the increase of the machining gap between the tool and the workpiece. On the basis of above, the machining mode with the tiny-grinding wheel based on the EMR effect is presented.


1999 ◽  
Vol 122 (3) ◽  
pp. 556-561 ◽  
Author(s):  
X. Yan ◽  
K. Shirase ◽  
M. Hirao ◽  
T. Yasui

The productivity of machining centers is influenced inherently by the quality of NC programs. To evaluate productivity, first an effective feedrate factor and a productivity evaluation factor are proposed. It has been found that in high-speed machining, these two factors depend on a kinematic factor which is a function of (1) command feedrate, (2) average per-block travel of the tool, (3) moving vectorial variation of the tool, and (4) ac/deceleration or time constants. Then an NC program simulator has been developed to evaluate productivity. With the simulator, the machining time can be calculated accurately and the cutting conditions can be extracted. Finally, three NC programs were implemented on high-speed machining centers and analyzed by the simulator. It was found that in mold and die machining, the productivity can be improved by increasing the acceleration and average travel and reducing the vectorial variation of the tool rather than the command feedrate. [S1087-1357(00)01303-4]


Author(s):  
MAHMUT ÇELIK ◽  
HAKAN GÜRÜN ◽  
ULAŞ ÇAYDAŞ

In this study, the effects of experimental parameters on average surface roughness and material removal rate (MRR) were experimentally investigated by machining of AISI 304 stainless steel plates by magnetic abrasive finishing (MAF) method. In the study in which three different abrasive types were used (Al2O3, B4C, SiC), the abrasive grain size was changed in two different levels (50 and 80[Formula: see text][Formula: see text]m), while the machining time was changed in three different levels (30, 45, 60[Formula: see text]min). Surface roughness values of finished surfaces were measured by using three-dimensional (3D) optical surface profilometer and surface topographies were created. MRRs were measured with the help of precision scales. The abrasive particles’ condition before and after the MAF process was examined and compared using a scanning electron microscope. As a result of the study, the surface roughness values of plates were reduced from 0.106[Formula: see text][Formula: see text]m to 0.028[Formula: see text][Formula: see text]m. It was determined that the best parameters in terms of average surface roughness were 60[Formula: see text]min machining time with 50[Formula: see text][Formula: see text]m B4C abrasives, while the best result in terms of MRR was taken in 30[Formula: see text]min with 50[Formula: see text][Formula: see text]m SiC abrasives.


2015 ◽  
Vol 1115 ◽  
pp. 12-15
Author(s):  
Nur Atiqah ◽  
Mohammad Yeakub Ali ◽  
Abdul Rahman Mohamed ◽  
Md. Sazzad Hossein Chowdhury

Micro end milling is one of the most important micromachining process and widely used for producing miniaturized components with high accuracy and surface finish. This paper present the influence of three micro end milling process parameters; spindle speed, feed rate, and depth of cut on surface roughness (Ra) and material removal rate (MRR). The machining was performed using multi-process micro machine tools (DT-110 Mikrotools Inc., Singapore) with poly methyl methacrylate (PMMA) as the workpiece and tungsten carbide as its tool. To develop the mathematical model for the responses in high speed micro end milling machining, Taguchi design has been used to design the experiment by using the orthogonal array of three levels L18 (21×37). The developed models were used for multiple response optimizations by desirability function approach to obtain minimum Ra and maximum MRR. The optimized values of Ra and MRR were 128.24 nm, and 0.0463 mg/min, respectively obtained at spindle speed of 30000 rpm, feed rate of 2.65 mm/min, and depth of cut of 40 μm. The analysis of variance revealed that spindle speeds are the most influential parameters on Ra. The optimization of MRR is mostly influence by feed rate. Keywords:Micromilling,surfaceroughness,MRR,PMMA


Sign in / Sign up

Export Citation Format

Share Document