The Research of Temperature Fields in the Proximity of a Bundle of Heated Pipes Arranged Above Each Other

2017 ◽  
Vol 139 (8) ◽  
Author(s):  
Jozef Cernecky ◽  
Zuzana Brodnianska ◽  
Przemysław Błasiak ◽  
Jan Koniar

The paper deals with the research of temperature fields in the proximity of heated pipes arranged above each other in a natural air convection. The holographic interferometry method was used for the visualization of temperature fields. The experiments were made with pipes, diameter of 20 mm, length 200 mm, spacing two-dimensional (2D) at surface temperatures of 40 °C, 50 °C, and 60 °C, with the vertical arrangement of the pipes as well as with the horizontal shift of their centers by 1/4D and 1/2D (on a surface temperature of 50 °C). Temperature profiles were determined from the experimentally obtained images of temperature fields, and local parameters of heat transfer were calculated. Under the same marginal and geometric conditions, computational fluid dynamics (CFD) simulations of temperature fields were performed as well, while the results (temperature fields, local and mean parameters of heat transfer) were also calculated for various distances between the pipe centers (1D, 2D, and 3D). From the obtained experimental results and CFD simulation results, it is possible to observe the impact of the arrangement and spacing of pipes on heat transfer parameters. The achieved results imply the change in the spacing of the pipes has a greater impact on heat transfer parameters in the bundle of heated pipes located above each other than a moderate horizontal shift of their centers.

Author(s):  
Mandana S. Saravani ◽  
Saman Beyhaghi ◽  
Ryoichi S. Amano

The present work investigates the effects of buoyancy and density ratio on the thermal performance of a rotating two-pass square channel. The U-bend configuration with smooth walls is selected for this study. The channel has a square cross-section with a hydraulic diameter of 5.08 cm (2 inches). The lengths of the first and second passes are 514 mm and 460 mm, respectively. The turbulent flow enters the channel with Reynolds numbers of up to 34,000. The rotational speed varies from 0 to 600 rpm with the rotational numbers up to 0.75. For this study, two approaches are considered for tracking the buoyancy effect on heat transfer. In the first case, the density ratio is set constant, and the rotational speed is varied. In the second case, the density ratio is changed in the stationary case, and the effect of density ratio is discussed. The range of Buoyancy number along the channel is 0–6. The objective is to investigate the impact of Buoyancy forces on a broader range of rotation number (0–0.75) and Buoyancy number scales (0–6), and their combined effects on heat transfer coefficient for a channel with aspect ratio of 1:1. Several computational fluid dynamics (CFD) simulation are carried out for this study, and some of the results are validated against experimental data.


2015 ◽  
Vol 36 (3) ◽  
pp. 331-344
Author(s):  
Jozef Cernecky ◽  
Zuzana Brodnianska ◽  
Jan Koniar

Abstract This contribution deals with the heat transfer parameters and pressure losses in heat exchange sets with six geometrical arrangements at low Re values (Re from 476 to 2926). Geometrical arrangements were characterised by the h/H ratio ranging from 0.2 to 1.0. The experiments used the holographic interferometry method in real time. This method enables visible and quantitative evaluations of images of temperature fields in the examined heat exchange. These images are used to determine the local and mean heat transfer parameters. The obtained data were used to determine the Colburn j-factor and the friction coefficient f. The measured values show that by using the profiled heat exchange surfaces and inserting regulating tubes, an intensification of heat transfer (increase of Num, and/or j) was achieved. However, pressure losses recorded a significant increase (increase of f).


2020 ◽  
pp. 155-164
Author(s):  
Viktor Trokhaniak ◽  
Ivan Rogovskii ◽  
Luidmyla Titova ◽  
Zoriana Dziubata ◽  
Petro Luzan ◽  
...  

Exposure and the outbreak of diseases result in significant losses in large scale poultry operation. New ventilation systems are necessary to provide safe and homogenous internal environment at large enterprises, especially under the changeable climatic conditions of global warming. Within the framework of this investigation, computational fluid dynamics (CFD) simulation of a side ventilation system in a poultry house during winter seasons has been conducted. As results, 3D temperature fields, current lines and pressures in a poultry house have been found. It has been determined that fresh air valves arranged at a height of 200 mm from flooring work better than those traditionally arranged at a height of 400 mm. The erection of walls on the inside of a poultry house framework as well as the decrease in the height of flooring improve poultry house aerodynamics.


2013 ◽  
Vol 34 (1) ◽  
pp. 5-16 ◽  
Author(s):  
Jozef Cernecky ◽  
Jan Koniar ◽  
Zuzana Brodnianska

Abstract The paper deals with a study of the effect of regulating elements on local values of heat transfer coefficients along shaped heat exchange surfaces with forced air convection. The use of combined methods of heat transfer intensification, i.e. a combination of regulating elements with appropriately shaped heat exchange areas seems to be highly effective. The study focused on the analysis of local values of heat transfer coefficients in indicated cuts, in distances expressed as a ratio x/s for 0; 0.33; 0.66 and 1. As can be seen from our findings, in given conditions the regulating elements can increase the values of local heat transfer coefficients along shaped heat exchange surfaces. An optical method of holographic interferometry was used for the experimental research into temperature fields in the vicinity of heat exchange surfaces. The obtained values correspond very well with those of local heat transfer coefficients αx, recorded in a CFD simulation.


Mathematics ◽  
2022 ◽  
Vol 10 (2) ◽  
pp. 178
Author(s):  
Mohammed Alghaseb ◽  
Walid Hassen ◽  
Abdelhakim Mesloub ◽  
Lioua Kolsi

In this study, a 3D numerical study of free ventilated room equipped with a discrete heat source was performed using the Finite Volume Method (FVM). To ensure good ventilation, two parallel openings were created in the room. A suction opening was located at the bottom of the left wall and another opening was located at the top of the opposite wall; the heat source was placed at various positions in order to compare the heating efficiency. The effects of Rayleigh number (103 ≤ Ra ≤ 106) for six heater positions was studied. The results focus on the impact of these parameters on the particle trajectories, temperature fields and on the heat transfer inside the room. It was found that the position of the heater has a dramatic effect on the behavior and topography of the flow in the room. When the heat source was placed on the wall with the suction opening, two antagonistic behaviors were recorded: an improvement in heat transfer of about 31.6%, compared to the other positions, and a low Rayleigh number against 22% attenuation for high Ra values was noted.


2021 ◽  
Author(s):  
Sanaz Dianat

The research paper investigates the impact of a window’s exterior air film on the assembly temperature. The exterior air film constitutes a vital portion of a window’s insulating values. The air film increases the temperature of the window exterior pane to a temperature above ambient temperature. The air film also rises the interior glass temperature and reduces the heat transfer from the interior surface. According to computational fluid dynamics (CFD), the air film is removed in windy conditions, decreasing the window temperature on the outside as well as on the inside. The idea behind the project is to carry out an experimental procedure on three different windows to validate the CFD results, which indicates the effect of various wind speeds. Keyword: Exterior air film, computational fluid dynamics, window assembly, wind speed


2021 ◽  
Author(s):  
Sanaz Dianat

The research paper investigates the impact of a window’s exterior air film on the assembly temperature. The exterior air film constitutes a vital portion of a window’s insulating values. The air film increases the temperature of the window exterior pane to a temperature above ambient temperature. The air film also rises the interior glass temperature and reduces the heat transfer from the interior surface. According to computational fluid dynamics (CFD), the air film is removed in windy conditions, decreasing the window temperature on the outside as well as on the inside. The idea behind the project is to carry out an experimental procedure on three different windows to validate the CFD results, which indicates the effect of various wind speeds. Keyword: Exterior air film, computational fluid dynamics, window assembly, wind speed


2008 ◽  
Vol 130 (5) ◽  
Author(s):  
Abdullatif Ben-Nakhi ◽  
M. M. Eftekhari ◽  
D. I. Loveday

A computational study of steady, laminar, natural convective fluid flow in a partially open square enclosure with a highly conductive thin fin of arbitrary length attached to the hot wall at various levels is considered. The horizontal walls and the partially open vertical wall are adiabatic while the vertical wall facing the partial opening is isothermally hot. The current work investigates the flow modification due to the (a) attachment of a highly conductive thin fin of length equal to 20%, 35%, or 50% of the enclosure width, attached to the hot wall at different heights, and (b) variation of the size and height of the aperture located on the vertical wall facing the hot wall. Furthermore, the study examines the impact of Rayleigh number (104⩽Ra⩽107) and inclination of the enclosure. The problem is put into dimensionless formulation and solved numerically by means of the finite-volume method. The results show that the presence of the fin has counteracting effects on flow and temperature fields. These effects are dependent, in a complex way, on the fin level and length, aperture altitude and size, cavity inclination angle, and Rayleigh number. In general, Nusselt number is directly related to aperture altitude and size. However, after reaching a peak Nusselt number, Nusselt number may decrease slightly if the aperture’s size increases further. The impact of aperture altitude diminishes for large aperture sizes because the geometrical differences decrease. Furthermore, a longer fin causes higher rate of heat transfer to the fluid, although the equivalent finless cavity may have higher heat transfer rate. In general, the volumetric flow rate and the rate of heat loss from the hot surfaces are interrelated and are increasing functions of Rayleigh number. The relationship between Nusselt number and the inclination angle is nonlinear.


Author(s):  
Yusheng Liu ◽  
Puzhen Gao ◽  
Dianchuan Xing

Fluctuating flow is widely presented in nuclear power plant operating procedure. When the fluctuating flow occurs in the loop, the fluid flow and heat transfer in the core will be affected, which makes the study of flow fluctuation have more practical significance. With computational fluid dynamics (CFD), characteristics of fluid flow and heat transfer are numerically simulated in a horizontal tube under periodical fluctuating flow. The influences of different factors on the fluid flow and heat transfer are analyzed. The simulation results of steady flow and heat transfer in horizontal tube agree with the traditional empirical correlations’ results, which validates the feasibility of doing this research using CFD simulation. The horizontal tube fluctuation flow and heat transfer with different flow fluctuation periods, fluctuation relative amplitudes and heat fluxes are numerically simulated. The results show that the smaller the flow fluctuation period is, the larger the flow fluctuation relative amplitude we get, and the more evident influence of flow fluctuation on fluid flow and heat transfer can be found. The larger the heat flux is, the larger amplitude of temperature fluctuation of fluid will be. What is more, there is a lag in phase between friction coefficient and velocity, which is not presented between heat transfer coefficient and velocity.


Author(s):  
Angela Wu ◽  
Seunghwan Keum ◽  
Volker Sick

In this study, the effects of the thermal boundary conditions at the engine walls on the predictions of Large-Eddy Simulations (LES) of a motored Internal Combustion Engine (ICE) were examined. Two thermal boundary condition cases were simulated. One case used a fixed, uniform wall temperature, which is typically used in conventional LES modeling of ICEs. The second case utilized a Conjugate Heat Transfer (CHT) modeling approach to obtain temporally and spatially varying wall temperature. The CHT approach solves the coupled heat transfer problem between fluid and solid domains. The CHT case included the solid valves, piston, cylinder head, cylinder liner, valve seats, and spark plug geometries. The simulations were validated with measured bulk flow, near-wall flow, surface temperature, and surface heat flux. The LES quality of both simulations was also discussed. The CHT results show substantial spatial, temporal, and cyclic variability of the wall heat transfer. The surface temperature dynamics obtained from the CHT model compared well with measurements during the compression stroke, but the absolute magnitude was 5 K (or 1.4%) off and the prediction of the drop in temperature after top dead center suffered from temporal resolution limitations. Differences in the predicted flow and temperature fields between the uniform surface temperature and CHT simulations show the impact of the surface temperature on bulk behavior.


Sign in / Sign up

Export Citation Format

Share Document