Qualitative Study of Cumulative Corrosion Damage of Information Technology Equipment in a Data Center Utilizing Air-Side Economizer Operating in Recommended and Expanded ASHRAE Envelope

2017 ◽  
Vol 139 (2) ◽  
Author(s):  
Jimil M. Shah ◽  
Oluwaseun Awe ◽  
Betsegaw Gebrehiwot ◽  
Dereje Agonafer ◽  
Prabjit Singh ◽  
...  

Deployment of airside economizers (ASEs) in data centers is rapidly gaining acceptance to reduce cost of cooling energy by reducing hours of operation of computer room air conditioning (CRAC) units. Airside economization has associated risk of introducing gaseous and particulate contamination into data centers, thus degrading the reliability of information technology (IT) equipment. The challenge is to determine reliability degradation of IT equipment if operated in environmental conditions outside American Society of Heating, Refrigeration, and Air-Conditioning Engineers (ASHRAE) recommended envelope with contamination severity levels higher than G1. This paper is a first attempt at addressing this challenge by studying the cumulative corrosion damage to IT equipment operated in an experimental modular data center (MDC) located in an industrial area with measured level of air contaminants in ISA severity level G2. This study serves several purposes including: correlating IT equipment reliability to levels of airborne corrosive contaminants and studying degree of reliability degradation when IT equipment is operated outside ASHRAE recommended envelope at a location with high levels of contaminants. Reliability degradation of servers exposed to outside air via an airside economizer was determined qualitatively by examining corrosion of components in these servers and comparing the results to corrosion of components in other similar servers that were stored in a space where airside economization was not used. In the 4 years of the modular data center's servers' operation, none of the servers failed. This observation highlights an opportunity to significantly save data center cooling energy by allowing IT equipment to operate outside the currently recommended and allowable ASHRAE envelopes and outside the ISA severity level G1.

Author(s):  
Jimil M. Shah ◽  
Oluwaseun Awe ◽  
Pavan Agarwal ◽  
Iziren Akhigbe ◽  
Dereje Agonafer ◽  
...  

Deployment of air-side economizers in data centers is rapidly gaining acceptance to reduce the cost of energy by reducing the hours of operation of CRAC units. Use of air-side economizers has the associated risk of introducing gaseous and particulate contamination into data centers, thus, degrading the reliability of Information Technology (IT) equipment. Sulfur-bearing gaseous contamination is of concern because it attacks the copper and silver metallization of the electronic components causing electrical opens and/or shorts. Particulate contamination with low deliquescence relative humidity is of concern because it becomes wet and therefore electrically conductive under normal data center relative humidity conditions. IT equipment manufacturers guarantee the reliability of their equipment operating in environment within ISA 71.04-2013 severity level G1 and within the ASHRAE recommended temperature-relative humidity envelope. The challenge is to determine the reliability degrading effect of contamination severity levels higher than G1 and the temperature and humidity allowable ranges A1–A3 well outside the recommended range. This paper is a first attempt at addressing this challenge by studying the cumulative corrosion damage to IT equipment operated in an experimental data center located in Dallas, known to have contaminated air with ISA 71.04-2013 severity level G2. The data center is cooled using an air-side economizer. This study serves several purposes including: the correlation of equipment reliability to levels of airborne corrosive contaminants and the study of the degree of reliability degradation when the equipment is operated, outside the recommended envelope, in the allowable temperature-relative humidity range in geographies with high levels of gaseous and particulate contamination. The operating and external conditions of a modular data center, located in a Dallas industrial area, using air-side economizer is described. The reliability degradation of servers exposed to outside air via an airside economizer was determined qualitatively examining the corrosion of components in the servers and comparing the results to the corrosion of components in a non-operating server stored in a protective environment. The corrosion-related reliability of the servers over almost the life of the product was related to continuous temperature and relative humidity for the duration of the experiment. This work provides guidance for data center administration for similar environment. From an industry perspective, it should be noted that in the four years of operation in the hot and humid Dallas climate using only evaporative cooling or fresh air cooling, we have not seen a single server failure in our research pod. That performance should highlight an opportunity for significant energy savings for data center operators in a much broader geographic area than currently envisioned with evaporative cooling.


2020 ◽  
Vol 142 (2) ◽  
Author(s):  
Oluwaseun Awe ◽  
Jimil M. Shah ◽  
Dereje Agonafer ◽  
Prabjit Singh ◽  
Naveen Kannan ◽  
...  

Abstract Airside economizers lower the operating cost of data centers by reducing or eliminating mechanical cooling. It, however, increases the risk of reliability degradation of information technology (IT) equipment due to contaminants. IT Equipment manufacturers have tested equipment performance and guarantee the reliability of their equipment in environments within ISA 71.04-2013 severity level G1 and the ASHRAE recommended temperature-relative humidity (RH) envelope. IT Equipment manufacturers require data center operators to meet all the specified conditions consistently before fulfilling warranty on equipment failure. To determine the reliability of electronic hardware in higher severity conditions, field data obtained from real data centers are required. In this study, a corrosion classification coupon experiment as per ISA 71.04-2013 was performed to determine the severity level of a research data center (RDC) located in an industrial area of hot and humid Dallas. The temperature-RH excursions were analyzed based on time series and weather data bin analysis using trend data for the duration of operation. After some period, a failure was recorded on two power distribution units (PDUs) located in the hot aisle. The damaged hardware and other hardware were evaluated, and cumulative corrosion damage study was carried out. The hypothetical estimation of the end of life of components is provided to determine free air-cooling hours for the site. There was no failure of even a single server operated with fresh air-cooling shows that using evaporative/free air cooling is not detrimental to IT equipment reliability. This study, however, must be repeated in other geographical locations to determine if the contamination effect is location dependent.


Author(s):  
Milton Meckler

What does remain a growing concern for many users of Data Centers is their continuing availability following the explosive growth of internet services in recent years, The recent maximizing of Data Center IT virtualization investments has resulted in improving the consolidation of prior (under utilized) server and cabling resources resulting in higher overall facility utilization and IT capacity. It has also resulted in excessive levels of equipment heat release, e.g. high energy (i.e. blade type) servers and telecommunication equipment, that challenge central and distributed air conditioning systems delivering air via raised floor or overhead to rack mounted servers arranged in alternate facing cold and hot isles (in some cases reaching 30 kW/rack or 300 W/ft2) and returning via end of isle or separated room CRAC units, which are often found to fight each other, contributing to excessive energy use. Under those circumstances, hybrid, indirect liquid cooling facilities are often required to augment above referenced air conditioning systems in order to prevent overheating and degradation of mission critical IT equipment to maintain rack mounted subject rack mounted server equipment to continue to operate available within ASHRAE TC 9.9 prescribed task psychometric limits and IT manufacturers specifications, beyond which their operational reliability cannot be assured. Recent interest in new web-based software and secure cloud computing is expected to further accelerate the growth of Data Centers which according to a recent study, the estimated number of U.S. Data Centers in 2006 consumed approximately 61 billion kWh of electricity. Computer servers and supporting power infrastructure for the Internet are estimated to represent 1.5% of all electricity generated which along with aggregated IT and communications, including PC’s in current use have also been estimated to emit 2% of global carbon emissions. Therefore the projected eco-footprint of Data Centers into the future has now become a matter of growing concern. Accordingly our paper will focus on how best to improve the energy utilization of fossil fuels that are used to power Data Centers, the energy efficiency of related auxiliary cooling and power infrastructures, so as to reduce their eco-footprint and GHG emissions to sustainable levels as soon as possible. To this end, we plan to demonstrate significant comparative savings in annual energy use and reduction in associated annual GHG emissions by employing a on-site cogeneration system (in lieu of current reliance on remote electric power generation systems), introducing use of energy efficient outside air (OSA) desiccant assisted pre-conditioners to maintain either Class1, Class 2 and NEBS indoor air dew-points, as needed, when operated with modified existing (sensible only cooling and distributed air conditioning and chiller systems) thereby eliminating need for CRAC integral unit humidity controls while achieving a estimated 60 to 80% (virtualized) reduction in the number servers within a existing (hypothetical post-consolidation) 3.5 MW demand Data Center located in southeastern (and/or southern) U.S., coastal Puerto Rico, or Brazil characterized by three (3) representative microclimates ranging from moderate to high seasonal outside air (OSA) coincident design humidity and temperature.


Author(s):  
Chandrakant D. Patel ◽  
Ratnesh K. Sharma ◽  
Cullen E. Bash ◽  
Monem H. Beitelmal

The information technology industry is in the midst of a transformation to lower the cost of operation through consolidation and better utilization of critical data center resources. Successful consolidation necessitates increasing utilization of capital intensive "always-on" data center infrastructure, and reducing the recurring cost of power. A need exists, therefore for an end to end physical model that can be used to design and manage dense data centers and determine the cost of operating a data center. The chip core to the cooling tower model must capture the power levels and thermo-fluids behavior of chips, systems, aggregation of systems in racks, rows of racks, room flow distribution, air conditioning equipment, hydronics, vapor compression systems, pumps and heat exchangers. Earlier work has outlined the foundation for creation of a "smart" data center through use of flexible cooling resources and a distributed sensing and control system that can provision the cooling resources based on the need. This paper shows a common thermodynamic platform which serves as an evaluation and basis for policy based control engine for such a "smart" data center with much broader reach - from chip core to the cooling tower. Computational Fluid Dynamics modeling is performed to determine the computer room air conditioning utilization for a given distribution of heat load and cooling resources in a production data center. Coefficient of performance (COP) of the computer room air conditioning units, based on the level of utilization, is used with COP of other cooling resources in the stack to determine the COP of the ensemble. The ensemble COP represents an overall measure of the performance of the heat removal stack in a data center.


Climate ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 110
Author(s):  
Alexandre F. Santos ◽  
Pedro D. Gaspar ◽  
Heraldo J. L. de Souza

Data Centers (DC) are specific buildings that require large infrastructures to store all the information needed by companies. All data transmitted over the network is stored on CDs. By the end of 2020, Data Centers will grow 53% worldwide. There are methodologies that measure the efficiency of energy consumption. The most used metric is the Power Usage Effectiveness (PUE) index, but it does not fully reflect efficiency. Three DC’s located at the cities of Curitiba, Londrina and Iguaçu Falls (Brazil) with close PUE values, are evaluated in this article using the Energy Usage Effectiveness Design (EUED) index as an alternative to the current method. EUED uses energy as a comparative element in the design phase. Infrastructure consumption is the sum of energy with Heating, Ventilating and Air conditioning (HVAC) equipment, equipment, lighting and others. The EUED values obtained were 1.245 (kWh/yr)/(kWh/yr), 1.313 (kWh/yr)/(kWh/yr) and 1.316 (kWh/yr)/(kWh/yr) to Curitiba, Londrina and Iguaçu Falls, respectively. The difference between the EUED and the PUE Constant External Air Temperature (COA) is 16.87% for Curitiba, 13.33% for Londrina and 13.30% for Iguaçu Falls. The new Perfect Design Data center (PDD) index prioritizes efficiency in increasing order is an easy index to interpret. It is a redefinition of EUED, given by a linear equation, which provides an approximate result and uses a classification table. It is a decision support index for the location of a Data Center in the project phase.


Author(s):  
Amip J. Shah ◽  
Van P. Carey ◽  
Cullen E. Bash ◽  
Chandrakant D. Patel

As heat dissipation in data centers rises by orders of magnitude, inefficiencies such as recirculation will have an increasingly significant impact on the thermal manageability and energy efficiency of the cooling infrastructure. For example, prior work has shown that for simple data centers with a single Computer Room Air-Conditioning (CRAC) unit, an operating strategy that fails to account for inefficiencies in the air space can result in suboptimal performance. To enable system-wide optimality, an exergy-based approach to CRAC control has previously been proposed. However, application of such a strategy in a real data center environment is limited by the assumptions inherent to the single-CRAC derivation. This paper addresses these assumptions by modifying the exergy-based approach to account for the additional interactions encountered in a multi-component environment. It is shown that the modified formulation provides the framework necessary to evaluate performance of multi-component data center thermal management systems under widely different operating circumstances.


2014 ◽  
Vol 602-605 ◽  
pp. 928-932
Author(s):  
Min Li ◽  
Yun Wang ◽  
Zheng Qian Feng ◽  
Wang Li

By studying the energy-saving technologies of air-conditioning system in data centers, we designed a intelligent air conditioning system, improved the cooling efficiency of air conditioning system through a reasonable set of hot and cold aisles, reduced the running time of HVAC by using the intelligent heat exchange system, an provided a reference for energy saving research of air conditioning system of data centers.


Author(s):  
Prabjit Singh ◽  
Levente Klein ◽  
Dereje Agonafer ◽  
Jimil M. Shah ◽  
Kanan D. Pujara

The energy used by information technology (IT) equipment and the supporting data center equipment keeps rising as data center proliferation continues unabated. In order to contain the rising computing costs, data center administrators are resorting to cost cutting measures such as not tightly controlling the temperature and humidity levels and in many cases installing air side economizers with the associated risk of introducing particulate and gaseous contaminations into their data centers. The ASHRAE TC9.9 subcommittee, on Mission Critical Facilities, Data Centers, Technology Spaces, and Electronic Equipment, has accommodated the data center administrators by allowing short period excursions outside the recommended temperature-humidity range, into allowable classes A1-A3. Under worst case conditions, the ASHRAE A3 envelope allows electronic equipment to operate at temperature and humidity as high as 24°C and 85% relative humidity for short, but undefined periods of time. This paper addresses the IT equipment reliability issues arising from operation in high humidity and high temperature conditions, with particular attention paid to the question of whether it is possible to determine the all-encompassing x-factors that can capture the effects of temperature and relative humidity on equipment reliability. The role of particulate and gaseous contamination and the aggravating effects of high temperature and high relative humidity will be presented and discussed. A method to determine the temperature and humidity x-factors, based on testing in experimental data centers located in polluted geographies, will be proposed.


Author(s):  
Dan Comperchio ◽  
Sameer Behere

Data center cooling systems have long been burdened by high levels of redundancy requirements, resulting in inefficient system designs to satisfy a risk-adverse operating environment. As attitudes, technologies, and sustainability awareness change within the industry, data centers are beginning to realize higher levels of energy efficiency without sacrificing operational security. By exploiting the increased temperature and humidity tolerances of the information technology equipment (ITE), data center mechanical systems can leverage ambient conditions to operate in economization mode for increased times during the year. Economization provides one of the largest methodologies for data centers to reduce their energy consumption and carbon footprint. As outside air temperatures and conditions become more favorable for cooling the data center, mechanical cooling through vapor-compression cycles is reduced or entirely eliminated. One favorable method for utilizing low outside air temperatures without sacrificing indoor air quality is through deploying rotary heat wheels to transfer heat between the data center return air and outside air without introducing outside air into the white space. A metal corrugated wheel is rotated through two opposing airstreams with varying thermal gradients to provide a net cooling effect at significantly reduced electrical energy over traditional mechanical cooling topologies. To further extend the impacts of economization, data centers are also able to significantly raise operating temperatures beyond what is traditionally found in comfort cooling applications. The increase in the dry bulb temperature provided to the inlet of the information technology equipment, as well as an elevated temperature rise across the equipment significantly reduces the energy use within a data center.


Sign in / Sign up

Export Citation Format

Share Document