scholarly journals New Data Center Performance Index: Perfect Design Data Center—PDD

Climate ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 110
Author(s):  
Alexandre F. Santos ◽  
Pedro D. Gaspar ◽  
Heraldo J. L. de Souza

Data Centers (DC) are specific buildings that require large infrastructures to store all the information needed by companies. All data transmitted over the network is stored on CDs. By the end of 2020, Data Centers will grow 53% worldwide. There are methodologies that measure the efficiency of energy consumption. The most used metric is the Power Usage Effectiveness (PUE) index, but it does not fully reflect efficiency. Three DC’s located at the cities of Curitiba, Londrina and Iguaçu Falls (Brazil) with close PUE values, are evaluated in this article using the Energy Usage Effectiveness Design (EUED) index as an alternative to the current method. EUED uses energy as a comparative element in the design phase. Infrastructure consumption is the sum of energy with Heating, Ventilating and Air conditioning (HVAC) equipment, equipment, lighting and others. The EUED values obtained were 1.245 (kWh/yr)/(kWh/yr), 1.313 (kWh/yr)/(kWh/yr) and 1.316 (kWh/yr)/(kWh/yr) to Curitiba, Londrina and Iguaçu Falls, respectively. The difference between the EUED and the PUE Constant External Air Temperature (COA) is 16.87% for Curitiba, 13.33% for Londrina and 13.30% for Iguaçu Falls. The new Perfect Design Data center (PDD) index prioritizes efficiency in increasing order is an easy index to interpret. It is a redefinition of EUED, given by a linear equation, which provides an approximate result and uses a classification table. It is a decision support index for the location of a Data Center in the project phase.


Author(s):  
Milton Meckler

What does remain a growing concern for many users of Data Centers is their continuing availability following the explosive growth of internet services in recent years, The recent maximizing of Data Center IT virtualization investments has resulted in improving the consolidation of prior (under utilized) server and cabling resources resulting in higher overall facility utilization and IT capacity. It has also resulted in excessive levels of equipment heat release, e.g. high energy (i.e. blade type) servers and telecommunication equipment, that challenge central and distributed air conditioning systems delivering air via raised floor or overhead to rack mounted servers arranged in alternate facing cold and hot isles (in some cases reaching 30 kW/rack or 300 W/ft2) and returning via end of isle or separated room CRAC units, which are often found to fight each other, contributing to excessive energy use. Under those circumstances, hybrid, indirect liquid cooling facilities are often required to augment above referenced air conditioning systems in order to prevent overheating and degradation of mission critical IT equipment to maintain rack mounted subject rack mounted server equipment to continue to operate available within ASHRAE TC 9.9 prescribed task psychometric limits and IT manufacturers specifications, beyond which their operational reliability cannot be assured. Recent interest in new web-based software and secure cloud computing is expected to further accelerate the growth of Data Centers which according to a recent study, the estimated number of U.S. Data Centers in 2006 consumed approximately 61 billion kWh of electricity. Computer servers and supporting power infrastructure for the Internet are estimated to represent 1.5% of all electricity generated which along with aggregated IT and communications, including PC’s in current use have also been estimated to emit 2% of global carbon emissions. Therefore the projected eco-footprint of Data Centers into the future has now become a matter of growing concern. Accordingly our paper will focus on how best to improve the energy utilization of fossil fuels that are used to power Data Centers, the energy efficiency of related auxiliary cooling and power infrastructures, so as to reduce their eco-footprint and GHG emissions to sustainable levels as soon as possible. To this end, we plan to demonstrate significant comparative savings in annual energy use and reduction in associated annual GHG emissions by employing a on-site cogeneration system (in lieu of current reliance on remote electric power generation systems), introducing use of energy efficient outside air (OSA) desiccant assisted pre-conditioners to maintain either Class1, Class 2 and NEBS indoor air dew-points, as needed, when operated with modified existing (sensible only cooling and distributed air conditioning and chiller systems) thereby eliminating need for CRAC integral unit humidity controls while achieving a estimated 60 to 80% (virtualized) reduction in the number servers within a existing (hypothetical post-consolidation) 3.5 MW demand Data Center located in southeastern (and/or southern) U.S., coastal Puerto Rico, or Brazil characterized by three (3) representative microclimates ranging from moderate to high seasonal outside air (OSA) coincident design humidity and temperature.



Author(s):  
Amip J. Shah ◽  
Van P. Carey ◽  
Cullen E. Bash ◽  
Chandrakant D. Patel

As heat dissipation in data centers rises by orders of magnitude, inefficiencies such as recirculation will have an increasingly significant impact on the thermal manageability and energy efficiency of the cooling infrastructure. For example, prior work has shown that for simple data centers with a single Computer Room Air-Conditioning (CRAC) unit, an operating strategy that fails to account for inefficiencies in the air space can result in suboptimal performance. To enable system-wide optimality, an exergy-based approach to CRAC control has previously been proposed. However, application of such a strategy in a real data center environment is limited by the assumptions inherent to the single-CRAC derivation. This paper addresses these assumptions by modifying the exergy-based approach to account for the additional interactions encountered in a multi-component environment. It is shown that the modified formulation provides the framework necessary to evaluate performance of multi-component data center thermal management systems under widely different operating circumstances.



2014 ◽  
Vol 602-605 ◽  
pp. 928-932
Author(s):  
Min Li ◽  
Yun Wang ◽  
Zheng Qian Feng ◽  
Wang Li

By studying the energy-saving technologies of air-conditioning system in data centers, we designed a intelligent air conditioning system, improved the cooling efficiency of air conditioning system through a reasonable set of hot and cold aisles, reduced the running time of HVAC by using the intelligent heat exchange system, an provided a reference for energy saving research of air conditioning system of data centers.



Author(s):  
Veerendra Mulay ◽  
Dereje Agonafer ◽  
Gary Irwin ◽  
Darshan Patell

Rising heat load trends in data center facilities have raised concerns over energy usage. The environmental protection agency has reported that the energy used in 2006 by data center industry was 1.5% of the total energy usage by entire nation. The experts agree that by year 2010, this usage will approach 2% of the annual energy use nationwide. Although many new concepts such as airside economizers and cogeneration are gaining traction, many data center facilities spend considerable energy in cooling. In this study, various cabinet designs are discussed. Isolating the supplied cold air from hot exhaust air is always a challenge in thermal management of data center facilities. A cabinet design that employs chimney to aid the isolation of hot and cold air is discussed. A computational model of representative data center is created to study the effectiveness of design under various supply air fractions.



Author(s):  
John Petrongolo ◽  
Kourosh Nemati ◽  
Kamran Fouladi

Abstract Data center power consumption has grown substantially in the past 20 years. According to the United States Data Center Energy Usage Report, the data center consumption in 2014 was estimated at 70 billion kWh, which accounted for 1.8% of the total U.S. electricity. The present effort investigates the effects of various data center parameters on a new set of metrics called the performance indicator to help assess and optimize the cooling performance of data centers. The three metrics in the performance indicator include power usage effectiveness ratio (PUEr), thermal conformance, and thermal resilience. The data center parameters investigated include computer room air handler (CRAH) setpoints, room configuration layouts, and containment strategies. The results show that the CRAH setpoint significantly influences the PUEr with higher setpoint values resulting in lower PUEr values. Room configuration layout changes and containment strategies showed substantial effects on thermal conformance and thermal resilience. The thermal conformance was increased approximately 10% with room configuration changes without changing the PUEr. Full hot aisle containment also improved the thermal conformance by 7.4%.



Author(s):  
Tahir Cader ◽  
Levi Westra ◽  
Andres Marquez

Although semiconductor manufacturers have provided temporary relief with lower-power multi-core microprocessors, OEMs and data center operators continue to push the limits for individual rack power densities. It is not uncommon today for data center operators to deploy multiple 20 kW racks in a facility. Such rack densities are exacerbating the major issues of power and cooling in data centers. Data center operators are now forced to take a hard look at the efficiencies of their data centers. Malone and Belady (2006) have proposed three metrics, i.e., Power Usage Effectiveness (PUE), Data Center Efficiency (DCE), and the Energy-to-Acquisition Cost ratio (EAC), to help data center operators quickly quantify the efficiency of their data centers. In their paper, Malone and Belady present nominal values of PUE across a broad cross-section of data centers. PUE values are presented for data centers at four levels of optimization. One of these optimizations involves the use of Computational Fluid Dynamics (CFD). In the current paper, CFD is used to conduct an in-depth investigation of a liquid-cooled data center that would potentially be housed at the Pacific Northwest National Labs (PNNL). The boundary conditions used in the CFD model are based upon actual measurements on a rack of liquid-cooled servers housed at PNNL. The analysis shows that the liquid-cooled facility could achieve a PUE of 1.57 as compared to a PUE of 3.0 for a typical data center (the lower the PUE, the better, with values below 1.6 approaching ideal). The increase in data center efficiency is also translated into an increase in the amount of IT equipment that can be deployed. At a PUE of 1.57, the analysis shows that 91% more IT equipment can be deployed as compared to the typical data center. The paper will discuss the analysis of the PUE, and will also explore the impact of the raising data center efficiency via the use of multiple cooling technologies and CFD analysis. Complete results of the analyses will be presented in the paper.



Author(s):  
Joseph R. H. Schaadt ◽  
Kamran Fouladi ◽  
Aaron P. Wemhoff ◽  
Joseph G. Pigeon

Data centers are most commonly cooled by air delivered to electronic equipment from centralized cooling systems. The research presented here is motivated by the need for strategies to improve and optimize the load capacity and thermal efficiency of data centers by using computational fluid dynamics (CFD). Here, CFD is used to model and optimize the Villanova Steel Orca Research Center (VSORC). VSORC, presently in the design stages, will provide a testing environment as well as the capability to investigate best practices and state of the art strategies including hybrid cooling, IT load distribution, density zones, and hot aisle and cold aisle containment. The results of this study will be used in the overall design and construction of the aforementioned research data center. The objective of this study is to find the optimal operating points and design layout of a data center while still meeting certain design constraints. A focus is on finding both the ideal total supply flow rate of the air conditioning units and the ideal chilled water supply temperature (CHWST) setpoint under different data center design configurations and load capacities. The total supply flow rate of the air conditioning units and the supply temperature setpoint of the chilled water system are varied as design parameters in order to systematically determine the optimal operating points. The study also examines the influence of hot aisle and cold aisle containment strategies in full containment, half containment, and no containment configurations on the determined optimal operating conditions for the modeled research data center.



Author(s):  
Tejeshkumar Bagul ◽  
Kanan Pujara ◽  
Jimil Shah ◽  
Oluwaseun Awe ◽  
Dereje Agonafer

The reliability of the data center equipment is being compromised as the American Society of Heating, Refrigeration and Air Conditioning Engineers recommendable psychometric limits are stretched outside the recommendable zones. When the ambient conditions are conducive enough the humidity and the gaseous contaminants present in the data centers react with the elements of Printed Circuit Boards (PCB) at various temperatures. The products of the reaction may lead to short circuit or extra resistance to the passage of current. This poses an increased threat to the reliability of the PCB. Contamination has become a serious problem in the developing nations like China and India where new data centers are rapidly coming up. The heavy industrialization and vehicular activities are the major source of the contamination. The losses due the corrosion of PCB by contaminants depends on various factors like concentration of gases, amount of humidity present, time of the day, location of the data center, filtration technique used for the air-conditioning system, etc. An actual study of effects of contaminants in data centers across the world would be a tedious task. Computational study saves the time as well as cost for this study. This research study gives deeper insights of the reaction mechanism. A computational study of the reaction of copper foils (representing the PCB) placed in a Paddle Wheel Test setup would be carried out. A Paddle Wheel Test setup gives us the flexibility to test various gases, that could pose a threat to data center equipment, without disturbing the actually data center servers. A reaction of hydrogen sulfide and sulfur dioxide on copper in the presence of humidity will be carried out in this study.



2013 ◽  
Vol 135 (3) ◽  
Author(s):  
Srinarayana Nagarathinam ◽  
Babak Fakhim ◽  
Masud Behnia ◽  
Steve Armfield

It is well known that the flow distribution in data centers can be effected by a variety of parameters such as rack and computer room air conditioning (CRAC) positions, raised-floor height, ceiling height, and percentage opening of perforated tiles. In the present paper, numerical simulations are conducted to optimize the layout of a raised-floor data center with respect to these parameters. Two different approaches have been used: parametric optimization; and a multivariable approach using response surface optimization. In the parametric optimization procedure, the data center is optimized with respect to the maximum temperature in the room. While in the multivariable approach, a cost function is constructed from all the rack inlet temperatures and is minimized. The results show that the multivariable approach is computationally economical and the optimized layout gives a better thermal performance compared to that of parametric optimization.



Sign in / Sign up

Export Citation Format

Share Document