Effective Dose Reduction in Lateral Lumbar Spine Diagnostic Radiography Using X-Ray Tube Heel Effect

2017 ◽  
Vol 3 (3) ◽  
Author(s):  
Avi Ben-Shlomo ◽  
Gabriel Bartal ◽  
Morris Mosseri ◽  
Shay Shabat

The study aimed to determine how the effective dose (ED) in lumbar spine X-ray examinations is influenced by patient positioning considering the X-ray tube heel effect. The study used Monte Carlo simulation of the effective dose. Using the heel effect, positioning of the patient in the head to anode direction reduces the effective dose by 5% when compared with the head to cathode positioning.

Author(s):  
D. R. Liu ◽  
S. S. Shinozaki ◽  
R. J. Baird

The epitaxially grown (GaAs)Ge thin film has been arousing much interest because it is one of metastable alloys of III-V compound semiconductors with germanium and a possible candidate in optoelectronic applications. It is important to be able to accurately determine the composition of the film, particularly whether or not the GaAs component is in stoichiometry, but x-ray energy dispersive analysis (EDS) cannot meet this need. The thickness of the film is usually about 0.5-1.5 μm. If Kα peaks are used for quantification, the accelerating voltage must be more than 10 kV in order for these peaks to be excited. Under this voltage, the generation depth of x-ray photons approaches 1 μm, as evidenced by a Monte Carlo simulation and actual x-ray intensity measurement as discussed below. If a lower voltage is used to reduce the generation depth, their L peaks have to be used. But these L peaks actually are merged as one big hump simply because the atomic numbers of these three elements are relatively small and close together, and the EDS energy resolution is limited.


Instruments ◽  
2021 ◽  
Vol 5 (2) ◽  
pp. 17
Author(s):  
Eldred Lee ◽  
Kaitlin M. Anagnost ◽  
Zhehui Wang ◽  
Michael R. James ◽  
Eric R. Fossum ◽  
...  

High-energy (>20 keV) X-ray photon detection at high quantum yield, high spatial resolution, and short response time has long been an important area of study in physics. Scintillation is a prevalent method but limited in various ways. Directly detecting high-energy X-ray photons has been a challenge to this day, mainly due to low photon-to-photoelectron conversion efficiencies. Commercially available state-of-the-art Si direct detection products such as the Si charge-coupled device (CCD) are inefficient for >10 keV photons. Here, we present Monte Carlo simulation results and analyses to introduce a highly effective yet simple high-energy X-ray detection concept with significantly enhanced photon-to-electron conversion efficiencies composed of two layers: a top high-Z photon energy attenuation layer (PAL) and a bottom Si detector. We use the principle of photon energy down conversion, where high-energy X-ray photon energies are attenuated down to ≤10 keV via inelastic scattering suitable for efficient photoelectric absorption by Si. Our Monte Carlo simulation results demonstrate that a 10–30× increase in quantum yield can be achieved using PbTe PAL on Si, potentially advancing high-resolution, high-efficiency X-ray detection using PAL-enhanced Si CMOS image sensors.


2001 ◽  
Vol 707 ◽  
Author(s):  
Harumasa Yoshida ◽  
Tatsuhiro Urushido ◽  
Hideto Miyake ◽  
Kazumasa Hiramtsu

ABSTRACTWe have successfully fabricated self-organized GaN nanotips by reactive ion etching using chlorine plasma, and have revealed the formation mechanism. Nanotips with a high density and a high aspect ratio have been formed after the etching. We deduce from X-ray photoelectron spectroscopy (XPS) analysis that the nanotip formation is attributed to nanometer-scale masks of SiO2 on GaN. The structures calculated by Monte Carlo simulation of our formation mechanism are very similar to the experimental nanotip structures.


Sign in / Sign up

Export Citation Format

Share Document