Transient Flow Study of a Novel Three-Cylinder Double-Acting Reciprocating Multiphase Pump

2017 ◽  
Vol 139 (10) ◽  
Author(s):  
Yi Ma ◽  
Huashuai Luo ◽  
Tao Gao ◽  
Zhihong Zhang

In petroleum industry, the stability of multiphase pumping is highly disturbed by the gas' presence with high content and variable working conditions. This paper is focused on studying the whole working cycle of the novel three-cylinder double-acting reciprocating multiphase pump. Based on the theoretical analysis, the method of computational fluid dynamics (CFD) is adopted to simulate the oil–gas flow in reciprocating multiphase pump. The numerical methodology, involving multiphase model, dynamic grid technique and user defined functions (UDF), is used to deal with in the calculation. The transient flow characteristics in pump cavity are obtained, and the flow ripples of reciprocating multiphase pump are analyzed. Furthermore, the effects of different operating parameters, such as suction and discharge pressures, inlet gas volume fraction (GVFi) on the capacity, and stability of pump, are studied. The results could help to develop and optimize the high-efficiency multiphase pump system.

Author(s):  
Joon-Hyung Kim ◽  
Him-Chan Lee ◽  
Joon-Yong Yoon ◽  
Kyoung-Yong Lee ◽  
Yong-Kab Lee ◽  
...  

The crude oil produced from well contains a mixture of oil, gas and water. The existing pump system that uses a single phase pump requires a separator to separate the crude oil. Changing from a single phase pump to a multiphase pump significantly reduces costs because a multiphase pump does not require a separator. Therefore, most wells currently being developed apply the multiphase pump system. In this study, a multiphase pump was designed using a multi objective optimization technique. To conduct research, a base model was chosen and its performance was evaluated through numerical analysis. The design variables and variable ranges were set for the impeller and the diffuser. Based on the selected variables, experiment sets were produced. The experiment sets were also evaluated for their performance using numerical analysis. Based on the performance evaluation results of each experiment set, the optimization model for a multiphase pump was derived using Response Surface Method (RSM). In addition, each model’s performance for multiphase flow was also evaluated according to changes in Gas Volume Fraction (GVF) using multiphase numerical analysis. Furthermore, the internal flow characteristics of each model were analyzed.


2015 ◽  
Vol 23 (03) ◽  
pp. 1530002 ◽  
Author(s):  
Hak Soo Kim ◽  
Min Soo Kim

This paper presents a comprehensive review of oil retention and performance of oil separator in a heat pump system. Liquid volume fraction model, viscous film model and analytical model from continuity and momentum equations for predicting the oil retention amount in a heat pump system are reviewed. In addition, weighing a test section, using an oil injection and extraction device and optical analysis for measuring the oil retention amount are introduced and experimental results are analyzed. Numerical studies which used commercial tools for computational fluid dynamics or suggested a new model by simplifying the flow in cyclone separator are reviewed. Effects of droplet size and angular velocity of gas phase flow in cyclone separator on the performance are discussed. Experimental methods for measuring the efficiency of oil separator are introduced, and theoretical analysis on the efficiency and pressure drop of cyclone separator is suggested.


Processes ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 167
Author(s):  
Rezwana Rahman ◽  
Haiping Zhu ◽  
Aibing Yu

Various simulations have been conducted to understand the macroscopic behavior of particles in the solid-gas flow in rotating drums in the past. In these studies, the no-slip wall boundary condition and fixed restitution coefficient between particles were usually adopted. The paper presents a numerical study of the gas-solid flow in a rotating drum to understand the effect of the specularity coefficient and restitution coefficient on the hydrodynamic behavior of particles in the segregation process. The volume fraction, granular pressure, granular temperature and their relationships are examined in detail. The boundary conditions of the no-slip and specularity coefficient of 1 are compared. In the simulations, two different sizes of particles with the same density are considered and the Eulerian–Eulerian multiphase model and the kinetic theory of granular flow (KTGF) are used. The results reveal that the hydrodynamical behavior of the particles in the rotating drum is affected by the boundary condition and restitution coefficient. In particular, the increase of specularity coefficient can increase the active region depth, angle repose, granular pressure for both small and large particles and granular temperature for large particles. With increasing restitution coefficient, the angle of repose decreases and granular pressure and temperature increase at the same volume fraction for both small and large particles.


Author(s):  
Augusto F. Nalin ◽  
Raphael I. Tsukada ◽  
Denis A. Shiguemoto ◽  
Jose R. P. Mendes ◽  
Adriane B. S. Serapiao

The discoveries of the Pre-salt oilfields have driven the development of new technologies to enable the production of the deepwater reservoirs. In this scenario, subsea pipelines play an important role. Analysis of the steady and transient flow inside the pipes should be addressed in the design, considering the variation of the fluid properties. In this context, a pipe flow simulator project has been developed to attend gas flow analysis for petroleum industry. In this project, the fluid compressibility factor (Z-factor) and the viscosity are considered function of the pressure, temperature and gas composition. The non-isothermal transient gas flow were calculated using the Method of Characteristics (MOC). The results shown the difference of the isothermal and non-isothermal steady state and transient flow.


2019 ◽  
Vol 11 (1) ◽  
pp. 168781401882335 ◽  
Author(s):  
Jinsong Zhang ◽  
Honggang Fan ◽  
Wei Zhang ◽  
Zhifeng Xie

Deep sea oil resources worldwide possess great potential for exploration; however, multiphase medium technology requires urgent development. The multiphase pump has achieved great success as one of the most advanced machinery in underwater oil and gas exploration. Tip clearance is inevitable between the rotating and stationary components of the multiphase pump. In this study, tip clearance sizes of 0.0, 0.2, 0.5, and 0.8 mm are selected to investigate the effect of tip clearance on energy performance and flow characteristics of a multiphase pump. Results show that pressure rises decrease by 10.72%, 24.96%, and 41.39% with gas volume fraction = 0% under different tip clearance sizes, while the pressure rises decrease by 17.10%, 25.35%, and 38.11% with gas volume fraction = 10%. The dominant frequencies and maximum amplitudes of pressure fluctuation rise with the increase in tip clearance. The entrainment effect between the tip leakage flow and main flow in the impeller strengthens with the increase in tip clearance size; the induced vortex area and leakage flow rate also increase.


Author(s):  
Xianfang Wu ◽  
Heyu Ye ◽  
Minggao Tan ◽  
Houlin Liu

Abstract To study the internal flow characteristics of the photovoltaic pump under the transient change of the solar radiation, the simulation algorithm of the photovoltaic pump system was established by MATLAB/Simulink and CFD for the first time and the results were validated by the test. Firstly, the change rule of pump flow rate and rotation speed under transient solar radiation was obtained by Simulink. Then the results of the change rule were transformed into the boundary condition of CFD by CEL function and the transient flow field in the photovoltaic pump was obtained. The internal flow characteristics and pressure pulsation in the pump were analyzed when the solar radiation increases or decreases transiently. The results demonstrate that the numerical calculation can provide accurate prediction for the characteristics of internal flow in the pump. The numerical results are closed to experimental results, the minimum error of pressure is 0.93% and the maximum error is 1.78%. When the solar radiation increases transiently, the low pressure area at the impeller inlet gets larger obviously and the jet-wake at the impeller outlet becomes more obvious. The pressure pulsation in impeller gradually increases and becomes stable after 0.6 s. The pressure from the impeller outlet to guide vane outlet is stable at 123 kPa. When the solar radiation decreases transiently, the pressure in the impeller takes 1.6 s to be stable. Larger pressure pulsation occurs from the impeller outlet to the guide vane inlet and the maximum differential pressure is 10 kPa. Compared with the transient increase of solar radiation, the pressure in the impeller takes more 0.2 s to stabilize when the solar radiation transient decreases. Meanwhile, the results in this paper can provide references for other transient characteristics research.


2013 ◽  
Vol 353-356 ◽  
pp. 2604-2609 ◽  
Author(s):  
Xiao Ni Yang ◽  
Yong Ye Li ◽  
Ruo Fan Li ◽  
Xi Huan Sun

Due to the quests of technology and changes of external load, dynamical system would under non-regulative operating condition. To discuss this situation, this paper did some research about the unsteady flows in centrifugal pump by simulating test. It shows that if non-regulative operating condition emerges in the pump system, some unsteady flow which possesses transient characteristics would appear, which driven by the common disturbance from the pump and valves in this system. Besides, the transient intensity of the system under non-regulative operating condition depends on the relative intensity of the capacity and inertia. When the capacity in system dominates, it would make transient intensity weaken, but if the inertia dominates, the transient intensity would move to an opposite side.


Sign in / Sign up

Export Citation Format

Share Document