scholarly journals An Experimental Investigation of Churning Power Losses of a Gearbox

2018 ◽  
Vol 140 (3) ◽  
Author(s):  
J. Polly ◽  
D. Talbot ◽  
A. Kahraman ◽  
A. Singh ◽  
H. Xu

In this study, load-independent (spin) power losses of a gearbox operating under dip-lubrication conditions are investigated experimentally using a final-drive helical gear pair from an automotive transmission as the example system. A dedicated gearbox is developed to operate a single gear or a gear pair under given speed and temperature conditions. A test matrix that consists of sets of tests with: (i) a single spur, helical gears, or disks with no teeth and (ii) helical gear pairs is executed at various temperatures, immersion depths, and pinion positions relative to its mating gear. Power losses from single gear and gear pair at identical operating conditions are compared to quantify the components of the total spin loss in the form of losses due to gear drag, gear mesh pocketing, and bearings and seals.

Author(s):  
J. Polly ◽  
David Talbot ◽  
Ahmet Kahraman ◽  
Avinash Singh ◽  
Hai Xu

In this study, load-independent (spin) power losses of a gearbox operating under dip-lubrication conditions are investigated experimentally using a final-drive helical gear pair from an automotive transmission as the example system. A dedicated gearbox is developed to operate a single gear or a gear pair under given speed and temperature conditions. A test matrix that consists of sets of tests with (i) single gears (spur, helical, or representative disks with no teeth), and (ii) helical gear pairs is executed at various temperatures, immersion depths and pinion positions relative to its mating gear. Power losses from single gears and gear pairs at identical operating conditions are compared to quantify the components of the total spin loss in the form of losses due to gear drag, gear mesh pocketing, and bearings and seals.


Author(s):  
David Talbot ◽  
Ahmet Kahraman ◽  
Satya Seetharaman

A new fluid dynamics model is proposed to predict the power losses due to pocketing of air, oil, or an air-oil mixture in the helical gear meshes. The proposed computational procedure treats a helical gear pair as combination of a number of narrow face width spur gear segments staggered according to the helix angle and forms a discrete, fluid dynamics model of the medium being pocketed in the gear mesh. Continuity and conservation of momentum equations are applied to each coupled control volume filled with a compressible fluid mixture to predict fluid pressure and velocity distributions from, which the instantaneous pocketing power loss is calculated. The proposed model is exercised in order to investigate fluid pressure and velocity distributions in time, as well as pocketing power loss as a function of speed, helix angle and oil-to-air ratio.


2014 ◽  
Author(s):  
Jiang Han ◽  
Youyu Liu ◽  
Dazhu Li ◽  
Lian Xia

In view of the limited number of the modified segments for high-order and two-stage modified elliptical helical gears, and poor adjustment capacity for gear ratio, the formation mechanism of a high-order multistage modified ellipse was studied, and a unified mathematical expression of the family of ellipses was obtained. Thus, a design procedure for the helical gear pair of the high-order multistage modified ellipse was suggested, and its transmission characteristics were discussed exhaustively. Moreover, some checking methods such as the curvature radius of the pitch curve, convexity, pressure angle, root cutting, and contact ratio were offered. Finally, two design cases, including two-order and three-stage modified elliptical helical gear pair and two-order and four-stage one, were implemented. The cases indicate that a high-order multistage modified elliptical helical gear can be utilized in practice.


1993 ◽  
Vol 115 (1) ◽  
pp. 33-39 ◽  
Author(s):  
A. Kahraman

In this paper, a linear dynamic model of a helical gear pair has been developed. The model accounts for the shaft and bearing flexibilities, and the dynamic coupling among the transverse, torsional, axial and rotational (rocking) motions due to the gear mesh. The natural frequencies and the mode shapes have been predicted, and the modes which are excited by the static transmission error have been identified. The forced response due to the static transmission error has also been predicted, including the dynamic mesh and bearing forces. A parametric study has been performed to investigate the effect of the helix angle on the free and forced vibrational characteristics of the gear pair. It has been shown that the helix angle can be neglected in predicting the natural frequencies and the dynamic mesh forces. An accurate prediction of dynamic bearing forces and moments requires inclusion of the helix angle in the analysis.


Author(s):  
Ahmet Kahraman

Abstract In this paper, a linear dynamic model of a helical gear pair has. been developed. The model accounts for the shaft and bearing flexibilities, and the dynamic coupling among the transverse, torsional, axial and rotational motions because of the gear mesh. The natural frequencies and the mode shapes have been predicted, and the modes which are excited by the static transmission error have been identified. The forced response due to the static transmission error has also been predicted, including the dynamic mesh and bearing forces. A parametric study has been performed to investigate the effect of the helix angle on the free and forced vibrational characteristics of the gear pair. It has been shown that the helix angle can be neglected in predicting the natural frequencies and the dynamic mesh forces. An accurate prediction of dynamic bearing forces and moments requires inclusion of helix angle in the analysis.


2014 ◽  
Vol 136 (2) ◽  
Author(s):  
David Talbot ◽  
Ahmet Kahraman ◽  
Satya Seetharaman

A new fluid dynamics model is proposed to predict the power losses due to pocketing of air, oil, or an air-oil mixture in the helical gear meshes. The proposed computational procedure treats a helical gear pair as a combination of a number of narrow face width spur gear segments staggered according to the helix angle and forms a discrete fluid dynamics model of the medium being pocketed in the gear mesh. Continuity and conservation of momentum equations are applied to each coupled control volume filled with a compressible fluid mixture to predict fluid pressure and velocity distributions from which the instantaneous pocketing power loss is calculated. The proposed model is exercised in order to investigate the fluid pressure and velocity distributions in time along with the pocketing power loss as a function of the speed, helix angle, and oil-to-air ratio.


2009 ◽  
Vol 131 (2) ◽  
Author(s):  
S. Seetharaman ◽  
A. Kahraman

A physics-based fluid mechanics model is proposed to predict spin power losses of gear pairs due to oil churning and windage. While the model is intended to simulate oil churning losses in dip-lubricated conditions, certain components of it apply to air windage losses as well. The total spin power loss is defined as the sum of (i) power losses associated with the interactions of individual gears with the fluid, and (ii) power losses due to pumping of the oil at the gear mesh. The power losses in the first group are modeled through individual formulations for drag forces induced by the fluid on a rotating gear body along its periphery and faces, as well as for eddies formed in the cavities between adjacent teeth. Gear mesh pumping losses will be predicted analytically as the power loss due to squeezing of the lubricant, as a consequence of volume contraction of the mesh space between mating gears as they rotate. The model is applied to a unity-ratio spur gear pair to quantify the individual contributions of each power loss component to the total spin power loss. The influence of operating conditions, gear geometry parameters, and lubricant properties on spin power loss are also quantified at the end. A companion paper (Seetharaman et al., 2009, “Oil Churning Power Losses of a Gear Pair: Experiments and Model Validation,” ASME J. Tribol., 131, p. 022202) provides comparisons to experiments for validation of the proposed model.


2020 ◽  
Vol 68 (1) ◽  
pp. 48-58
Author(s):  
Chao Liu ◽  
Zongde Fang ◽  
Fang Guo ◽  
Long Xiang ◽  
Yabin Guan ◽  
...  

Presented in this study is investigation of dynamic behavior of a helical gear reduction by experimental and numerical methods. A closed-loop test rig is designed to measure vibrations of the example system, and the basic principle as well as relevant signal processing method is introduced. A hybrid user-defined element model is established to predict relative vibration acceleration at the gear mesh in a direction normal to contact surfaces. The other two numerical models are also constructed by lumped mass method and contact FEM to compare with the previous model in terms of dynamic responses of the system. First, the experiment data demonstrate that the loaded transmission error calculated by LTCA method is generally acceptable and that the assumption ignoring the tooth backlash is valid under the conditions of large loads. Second, under the common operating conditions, the system vibrations obtained by the experimental and numerical methods primarily occur at the first fourth-order meshing frequencies and that the maximum vibration amplitude, for each method, appears on the fourth-order meshing frequency. Moreover, root-mean-square (RMS) value of the acceleration increases with the increasing loads. Finally, according to the comparison of the simulation results, the variation tendencies of the RMS value along with input rotational speed agree well and that the frequencies where the resonances occur keep coincident generally. With summaries of merit and demerit, application of each numerical method is suggested for dynamic analysis of cylindrical gear system, which aids designers for desirable dynamic behavior of the system and better solutions to engineering problems.


2021 ◽  
pp. 1-16
Author(s):  
Siyu Wang ◽  
Rupeng Zhu

Abstract Based on “slice method”, the improved time-varying mesh stiffness (TVMS) calculation model of helical gear pair with tooth surface wear is proposed, in which the effect of friction force that obtained under mixed elasto-hydrodynamic lubrication (EHL) is considered in the model. Based on the improved TVMS calculation model, the dynamic model of helical gear system is established, then the influence of tooth wear parameters on the dynamic response is studied. The results illustrate that the varying reduction extents of mesh stiffness along tooth profile under tooth surface wear, in addition, the dynamic response in time-domain and frequency-domain present significant decline in amplitude under deteriorating wear condition.


Sign in / Sign up

Export Citation Format

Share Document