A Novel Pinch Point Design Methodology Based Energy and Economic Analyses of Organic Rankine Cycle

2018 ◽  
Vol 140 (5) ◽  
Author(s):  
Jahar Sarkar

A generalized methodology for pinch point design and optimization of subcritical and transcritical organic Rankine cycles (ORCs) using both wet and dry fluids is adopted in this study. The presented algorithm can predict the pinch point location in evaporator and condenser simultaneously and optimize the evaporator pressure for best performance with various heat source and sink conditions. Effects of pinch point temperature difference (PPTD), isentropic efficiency, subcooling, superheating and regenerator on the energy and economic performances are discussed for selected working fluids. System yields similar optimum design for both maximum power generation and minimum capital cost per unit power. At optimum condition, ammonia is best in terms of higher thermal efficiency and lower component size, R152a is best in terms of higher net power output and heat recovery efficiency (11.1%), and toluene is best in terms of lower capital cost and cost per unit power output (7060 $/kW). Effect of heat source and sink parameters on both energy and economic performances is significant. Contour plots are presented to select the best ORC design parameters for available heat source condition. PPTD and expander isentropic efficiency have significant effect on performances. However, the effect of subcooling, superheating and regenerator depends on working fluid.

Energies ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4623 ◽  
Author(s):  
Liya Ren ◽  
Huaixin Wang

Compared with the basic organic and steam Rankine cycles, the organic trans-critical cycle (OTC), steam flash cycle (SFC) and steam dual-pressure cycle (SDC) can be regarded as the improved cycle configurations for the waste heat power recovery since they can achieve better temperature matching between the heat source and working fluid in the heat addition process. This study investigates and compares the thermodynamic performance of the OTC, SFC, and SDC based on the waste heat source from the cement kiln with an initial temperature of 320 °C and mass flow rate of 86.2 kg/s. The effects of the main parameters on the cycle performance are analyzed and the parameter optimization is performed with net power output as the objective function. Results indicate that the maximum net power output of SDC is slightly higher than that of SFC and the OTC using n-pentane provides a 19.74% increase in net power output over the SDC since it can achieve the higher use of waste heat and higher turbine efficiency. However, the turbine inlet temperature of the OTC is limited by the thermal stability of the organic working fluid, hence the SDC outputs more power than that of the OTC when the initial temperature of the exhaust gas exceeds 415 °C.


Author(s):  
D H Rix

This paper describes the design considerations that were involved in the production of a prototype Stirling engine, primarily intended for use in a domestic scale combined heat and power (CHP) system. These are discussed in terms of the specification of basic design parameters—configuration, working fluid, etc. First the particular requirements of this application are considered, primarily a power output of 1 kW or less, suitability for high-volume mass production, ultra long life and as high an efficiency as possible. The design that emerges is relatively simple, of low specific power output and with rather conservative operating parameters—temperature, pressure and speed.


2017 ◽  
Vol 140 (3) ◽  
Author(s):  
Matthew J. Traum ◽  
Fatemeh Hadi ◽  
Muhammad K. Akbar

The analytical model of Carey is extended and clarified for modeling Tesla turbine performance. The extended model retains differentiability, making it useful for rapid evaluation of engineering design decisions. Several clarifications are provided including a quantitative limitation on the model’s Reynolds number range; a derivation for output shaft torque and power that shows a match to the axial Euler Turbine Equation; eliminating the possibility of tangential disk velocity exceeding inlet working fluid velocity; and introducing a geometric nozzle height parameter. While nozzle geometry is limited to a slot providing identical flow velocity to each channel, variable nozzle height enables this velocity to be controlled by the turbine designer as the flow need not be choked. To illustrate the utility of this improvement, a numerical study of turbine performance with respect to variable nozzle height is provided. Since the extended model is differentiable, power sensitivity to design parameters can be quickly evaluated—a feature important when the main design goal is maximizing measurement sensitivity. The derivatives indicate two important results. First, the derivative of power with respect to Reynolds number for a turbine in the practical design range remains nearly constant over the whole laminar operating range. So, for a given working fluid mass flow rate, Tesla turbine power output is equally sensitive to variation in working fluid physical properties. Second, turbine power sensitivity increases as wetted disk area decreases; there is a design trade-off here between maximizing power output and maximizing power sensitivity.


2019 ◽  
Author(s):  
Ana C. Ferreira ◽  
Senhorinha F. C. F. Teixeira ◽  
Ricardo F. Oliveira ◽  
José C. Teixeira

Abstract An alpha-Stirling configuration was modelled using a Computational Fluid Dynamic (CFD), using ANSYS® software. A Stirling engine is an externally heated engine which has the advantage of working with several heat sources with high efficiencies. The working gas flows between compression and expansion spaces by alternate crossing of, a low-temperature heat exchanger (cooler), a regenerator and a high-temperature heat exchanger (heater). Two pistons positioned at a phase angle of 90 degrees were designed and the heater and cooler were placed on the top of the pistons. The motion of the boundary conditions with displacement was defined through a User Defined Function (UDF) routine, providing the motion for the expansion and compression piston, respectively. In order to define the temperature differential between the engine hot and the cold sources, the walls of the heater and cooler were defined as constant temperatures, whereas the remaining are adiabatic. The objective is to study the thermal behavior of the working fluid considering the piston motion between the hot and cold sources and investigate the effect of operating conditions on engine performance. The influence of regenerator matrix porosity, hot and cold temperatures on the engine performance was investigated through predicting the PV diagram of the engine. The CFD simulation of the thermal engine’s performance provided a Stirling engine with 760W of power output. It was verified that the Stirling engine can be optimized when the best design parameters combination are applied, mostly the regenerator porosity and cylinders volume, which variation directly affect the power output.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Suresh Baral

The current research study focuses on the feasibility of stand-alone hybrid solar-geothermal organic Rankine cycle (ORC) technology for power generation from hot springs of Bhurung Tatopani, Myagdi, Nepal. For the study, the temperature of the hot spring was measured on the particular site of the heat source of the hot spring. The measured temperature could be used for operating the ORC system. Temperature of hot spring can also further be increased by adopting the solar collector for rising the temperature. This hybrid type of the system can have a high-temperature heat source which could power more energy from ORC technology. There are various types of organic working fluids available on the market, but R134a and R245fa are environmentally friendly and have low global warming potential candidates. The thermodynamic models have been developed for predicting the performance analysis of the system. The input parameter for the model is the temperature which was measured experimentally. The maximum temperature of the hot spring was found to be 69.7°C. Expander power output, thermal efficiency, heat of evaporation, solar collector area, and hybrid solar ORC system power output and efficiency are the outputs from the developed model. From the simulation, it was found that 1 kg/s of working fluid could produce 17.5 kW and 22.5 kW power output for R134a and R245fa, respectively, when the geothermal source temperature was around 70°C. Later when the hot spring was heated with a solar collector, the power output produced were 25 kW and 30 kW for R134a and R245fa, respectively, when the heat source was 99°C. The study also further determines the cost of electricity generation for the system with working fluids R134a and R245fa to be $0.17/kWh and $0.14/kWh, respectively. The levelised cost of the electricity (LCOE) was $0.38/kWh in order to be highly feasible investment. The payback period for such hybrid system was found to have 7.5 years and 10.5 years for R245fa and R134a, respectively.


2019 ◽  
Vol 8 (2) ◽  
pp. 141 ◽  
Author(s):  
Ghalya Pikra ◽  
Nur Rohmah

Regenerative organic Rankine cycle (RORC) can be used to improve organic Rankine cycle (ORC) performance. This paper presents a comparison of a single (SSRORC) and double stage regenerative organic Rankine cycle (DSRORC) using a medium grade heat source. Performance for each system is estimated using the law of thermodynamics I and II through energy and exergy balance. Solar thermal is used as the heat source using therminol 55 as a working fluid, and R141b is used as the organic working fluid. The initial data for the analysis are heat source with 200°C of temperature, and 100 L/min of volume flow rate. Analysis begins by calculating energy input to determine organic working fluid mass flow rate, and continued by calculating energy loss, turbine power and pump power consumption to determine net power output and thermal efficiency. Exergy analysis begins by calculating exergy input to determine exergy efficiency. Exergy loss, exergy destruction at the turbine, pump and feed heater is calculated to complete the calculation. Energy estimation result shows that DSRORC determines better net power output and thermal efficiency for 7.9% than SSRORC, as well as exergy estimation, DSRORC determines higher exergy efficiency for 7.69%. ©2019. CBIORE-IJRED. All rights reserved


Author(s):  
F. David Doty ◽  
Siddarth Shevgoor

Detailed thermodynamic and systems analyses show that a novel hybrid cycle, in which a low-grade (and low-cost) heat source (340 K to 460 K) provides the boiling enthalpy and some of the preheating while a mid-grade source (500 K to 800 K) provides the enthalpy for the final superheating, can achieve dramatic efficiency and cost advantages. Four of the more significant differences from prior bi-level cycles are that (1) only a single expander turbine (the most expensive component) is required, (2) condenser pressures are much higher, (3) the turbine inlet temperature (even with a low-grade geothermal source providing much of the energy) may be over 750 K, and (4) turbine size is reduced. The latent heat of vaporization of the working fluid and the differences in specific heats between the liquid and vapor phases make full optimization (approaching second-law limits) impossible with a single heat source. When two heat sources are utilized, this problem may be effectively solved — by essentially eliminating the pinch point. The final superheater temperature must also be increased, and novel methods have been investigated for increasing the allowable temperature limit of the working fluid by 200 to 350 K. The usable temperature limit of light alkanes may be dramatically increased by (1) accommodating hydrogen evolution from significant dehydrogenation; (2) periodically or continually removing undesired reaction products from the fluid; (3) minimizing the fraction of time the fluid spends at high temperatures. Detailed simulation results are presented for the case where (1) the low-grade heat source (such as geothermal) is 400 K and (2) the mid-grade Concentrated Solar Power (CSP) heat source is assumed to be 720 K. For an assumed condensing temperature of 305 K and working fluid flow rate of 100 kg/s, preliminary simulations give the following: (1) low-grade heat input is 25 MWT; (2) mid-grade heat input is 24 MWT; (3) the electrical output power is 13.5 MWE; and (4) the condenser rejection is only 35 MWT. For comparison, with a typical bi-level ORC generating similar power from this geothermal source alone, the low-grade heat requirement would be ∼100 MWT.


1980 ◽  
Vol 102 (1) ◽  
pp. 215-222 ◽  
Author(s):  
D. D. Rosard

The choice of working fluid has a significant impact on the size and design characteristics of turbines for closed cycle OTEC (Ocean Thermal Energy Conversion) power systems. This paper examines turbine sizes and speeds for various candidate working fluids. The turbine performance and design limits are strongly influenced by blade stress criteria which have been ignored by previous investigators. Illustrative design parameters are given for a turbine using ammonia and scaling parameters are listed to compare the power outputs of turbines using other fluids. The design of a turbine for open-cycle OTEC power systems is largely dictated by the very high specific volume of the exhaust steam at a pressure of about 0.14 psia. In order to minimize the cost of turbines and generators through economy of scale, it is desirable to maximize the power output of a single turbine, and this leads to very large diameters and blade lengths. This paper explores the considerations which influence the choice of turbine size, blade length, speed, power output and efficiency.


2020 ◽  
Vol 24 (4) ◽  
pp. 2661-2663 ◽  
Author(s):  
Mohamed Awad

Commentaries are presented on Ye et al. [1]?s paper, where the authors investigated the performance of heat transfer in evaporator under the case that the parameters of the heat source and temperature of pinch point were identified. They utilized the graphical method of temperature-heat (T-Q) diagram analysis. Also, they utilized the entransy principle in their analysis. Commentaries show the reality that the graphical method of T-Q diagram analysis belongs to Professor Adrian Bejan, who first proposed it in 1977. In addition, many instances in the literature are given to indicate disputes for the entransy principle by oppositionists of ?entransy? from various countries.


2018 ◽  
Vol 140 (5) ◽  
Author(s):  
Bhargav Pandya ◽  
Vinay Kumar ◽  
Jatin Patel ◽  
V. K. Matawala

This comprehensive investigation has been executed to compare the thermodynamic performance and optimization of LiCl–H2O and LiBr–H2O type absorption system integrated with flat-plate collectors (FPC), parabolic-trough collectors (PTC), evacuated-tube collectors (ETC), and compound parabolic collectors (CPC). A model of 10 kW is analyzed in engineering equation solver (ees) from thermodynamic perspectives. Solar collectors are integrated with a storage tank which fueled the LiCl–H2O and LiBr–H2O vapor absorption system to produce refrigeration at 7 °C in evaporator for Gujarat Region of India. The main objective includes the evaluation and optimization of critical performance and design parameters to exhibit the best working fluid pair and collector type. Optimum heat source temperature corresponding to energetic and exergetic aspects for LiCl–H2O pair is lower than that of LiBr–H2O pair for all collectors. Simulation shows that FPC has lowest capital cost, exergetic performance wise PTC is optimum, and ETC requires lowest collector area. On the basis of overall evaluation, solar absorption cooling systems are better to be powered by ETC with LiCl–H2O working fluid pair.


Sign in / Sign up

Export Citation Format

Share Document