Residual Stresses in Titanium Spinal Rods: Effects of Two Contouring Methods and Material Plastic Properties

2018 ◽  
Vol 140 (11) ◽  
Author(s):  
Francesca Berti ◽  
Luigi La Barbera ◽  
Agnese Piovesan ◽  
Dario Allegretti ◽  
Claudia Ottardi ◽  
...  

Posterior spinal fixation based on long spinal rods is the clinical gold standard for the treatment of severe deformities. Rods need to be contoured prior to implantation to fit the natural curvature of the spine. The contouring processes is known to introduce residual stresses and strains which affect the static and fatigue mechanical response of the implant, as determined through time- and cost-consuming experimental tests. Finite element (FE) models promise to provide an immediate understanding on residual stresses and strains within a contoured spinal rods and a further insight on their complex distribution. This study aims at investigating two rod contouring strategies, French bender (FB) contouring (clinical gold standard), and uniform contouring, through validated FE models. A careful characterization of the elastoplastic material response of commercial implants is led. Compared to uniform contouring, FB induces highly localized plasticizations in compression under the contouring pin with extensive lateral sections undergoing tensile residual stresses. The sensitivity analysis highlighted that the assumed postyielding properties significantly affect the numerical predictions; therefore, an accurate material characterization is recommended.

1998 ◽  
Vol 33 (3) ◽  
pp. 243-252 ◽  
Author(s):  
T Lorentzen ◽  
T Faurholdt ◽  
B Clausen ◽  
J Danckert

Residual stresses generated by macroscopic inhomogeneous plastic deformation are predicted by an explicit finite element (FE) technique. The numerical predictions are evaluated by characterizing the residual elastic strains by neutron diffraction using two different ( hkl) reflections. Intergranular residual elastic strains between subsets of grains are predicted numerically and verified by neutron diffraction. Subsequently, the measured residual strain profiles in the test samples are modified by the intergranular strains and compared to the engineering predictions of the FE technique. Results compare well and verify the capability of the numerical technique as well as the possibilities of experimental validation using neutron diffraction. The presented experimental and numerical approach will subsequently be utilized for the evaluation of more complicated plastic deformation processes resembling forming operations.


Author(s):  
Pavana Sirimamilla ◽  
Ahmet Erdemir ◽  
Antonie J. van den Bogert ◽  
Jason P. Halloran

Experimental testing of cadaver specimens is a useful means to quantify structural and material response of tissue and passive joint properties against applied loading[1,4]. Very often, specific material response (i.e., stress-strain behavior of a ligament or plantar tissue) has been the goal of experimental testing and is accomplished with uniaxial and/or biaxial tests of prepared tissue specimens with uniform geometries[2,5]. Material properties can then be calculated directly and if testing data involves individual sets of multiple loading modes (e.g. compression only, shear only, volumetric) an accurate representation of the global response of the specimen may be possible. In foot biomechanics, however, it is practically impossible to perform isolated mechanical testing in this manner. The structural response, therefore the stiffness characteristics, of the foot have been quantified, usually using a dominant loading mode: e.g., whole foot compression [6], heel pad indentation [3]. This approach ignores the complexity of most in vivo loading conditions, in which whole foot deformation involves interactions between compression, shear (e.g. heel pad) and tension (e.g. ligaments). Therefore, the purpose of this study was to quantify the mechanical response of a cadaver foot specimen subjected to compression and anterior-posterior (AP) shear loading of isolated heel and forefoot regions as well as whole foot compression. Results from the experimental tests represent a novel methodology to quantify a complete structural biomechanical response. Combined with medical imaging, followed by inverse finite element (FE) analysis, the data may also serve for material characterization of foot tissue.


2008 ◽  
Vol 571-572 ◽  
pp. 303-308
Author(s):  
Robert Fedyk ◽  
Jorma Hölsä ◽  
Dariusz Hreniak ◽  
Mika Lastusaari ◽  
Vesa Pekka Lehto ◽  
...  

Y3Al5O12:Nd3+ nanoceramics were obtained by sintering nanocrystalline Y3Al5O12:Nd3+ powders at 450 oC under different pressures between 2 and 8 GPa. The structural purity, residual stress, strain, texture, and crystallite size of the products were analysed with X-ray powder diffraction. The results indicate that the average crystallite size remains unchanged at about 30 nm in spite of the heating and the pressure applied. No texture was observed. On the other hand, the microstrains increase with increasing pressure, while the residual stresses are at their maximum in the green body and the sample processed at 8 GPa. Increasing strains were observed to increase the width of the luminescence lines and to decrease the luminescence decay times.


2016 ◽  
Vol 16 (03) ◽  
pp. 1650023 ◽  
Author(s):  
PIERO GIOVANNI PAVAN ◽  
PAOLA PACHERA ◽  
SILVIA TODROS ◽  
CESARE TIENGO ◽  
ARTURO NICOLA NATALI

Bioprostheses obtained from animal models are often adopted in abdominal surgery for repair and reconstruction. The functionality of these prosthetic implants is related also to their mechanical characteristics that are analyzed here. This work illustrates a constitutive model to describe the short-term mechanical response of Permacol[Formula: see text] bioprostheses. Experimental tests were developed on tissue samples to highlight mechanical non-linear characteristics and viscoelastic phenomena. Uni-axial tensile tests were developed to evaluate the strength and strain stiffening. Incremental uni-axial stress relaxation tests were carried out at nominal strain ranging from 10% to 20% and to monitor the stress relaxation process up to 400[Formula: see text]s. The constitutive model effectively describes the mechanical behavior found in experimental testing. The mechanical response appears to be independent on the loading direction, showing that the tissue can be considered as isotropic. The viscoelastic response of the tissue shows a strong decay of the stress in the first seconds of the relaxation process. The investigation performed is aimed at a general characterization of the biomechanical response and addresses the development of numerical models to evaluate the biomechanical performance of the graft with surrounding host tissues.


Author(s):  
D. L. Callahan

Modern polishing, precision machining and microindentation techniques allow the processing and mechanical characterization of ceramics at nanometric scales and within entirely plastic deformation regimes. The mechanical response of most ceramics to such highly constrained contact is not predictable from macroscopic properties and the microstructural deformation patterns have proven difficult to characterize by the application of any individual technique. In this study, TEM techniques of contrast analysis and CBED are combined with stereographic analysis to construct a three-dimensional microstructure deformation map of the surface of a perfectly plastic microindentation on macroscopically brittle aluminum nitride.The bright field image in Figure 1 shows a lg Vickers microindentation contained within a single AlN grain far from any boundaries. High densities of dislocations are evident, particularly near facet edges but are not individually resolvable. The prominent bend contours also indicate the severity of plastic deformation. Figure 2 is a selected area diffraction pattern covering the entire indentation area.


Author(s):  
Dan Pornhagen ◽  
Konrad Schneider ◽  
Markus Stommel

AbstractMost concepts to characterize crack propagation were developed for elastic materials. When applying these methods to elastomers, the question is how the inherent energy dissipation of the material affects the cracking behavior. This contribution presents a numerical analysis of crack growth in natural rubber taking energy dissipation due to the visco-elastic material behavior into account. For this purpose, experimental tests were first carried out under different load conditions to parameterize a Prony series as well as a Bergström–Boyce model with the results. The parameterized Prony series was then used to perform numerical investigations with respect to the cracking behavior. Using the FE-software system ANSYS and the concept of material forces, the influence and proportion of the dissipative components were discussed.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1454
Author(s):  
Pietro Russo ◽  
Francesca Cimino ◽  
Antonio Tufano ◽  
Francesco Fabbrocino

The growing demand for lightweight and multifunctional products in numerous industrial fields has recently fuelled a growing interest in the development of materials based on polymer matrices including graphene-like particles, intrinsically characterized by outstanding mechanical, thermal, and electrical properties. Specifically, with regard to one of the main mass sectors, which is the automotive, there has been a significant increase in the use of reinforced polyamides for underhood applications and fuel systems thanks to their thermal and chemical resistance. In this frame, polyamide 6 (PA6) composites filled with graphene nanoplatelets (GNPs) were obtained by melt-compounding and compared in terms of thermal and mechanical properties with the neat matrix processed under the same condition. The results of the experimental tests have shown that the formulations studied so far offer slight improvements in terms of thermal stability but much more appreciable benefits regarding both tensile and flexural parameters with respect to the reference material. Among these effects, the influence of the filler content on the strength parameter is noteworthy. However, the predictable worsening of the graphene sheet dispersion for GNPs contents greater than 3%, as witnessed by scanning electron images of the tensile fractured sections of specimens, affected the ultimate performance of the more concentrated formulation.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1223
Author(s):  
Elisa Ficarella ◽  
Mohammad Minooei ◽  
Lorenzo Santoro ◽  
Elisabetta Toma ◽  
Bartolomeo Trentadue ◽  
...  

This article presents a very detailed study on the mechanical characterization of a highly nonlinear material, the immature equine zona pellucida (ZP) membrane. The ZP is modeled as a visco-hyperelastic soft matter. The Arruda–Boyce constitutive equation and the two-term Prony series are identified as the most suitable models for describing the hyperelastic and viscous components, respectively, of the ZP’s mechanical response. Material properties are identified via inverse analysis based on nonlinear optimization which fits nanoindentation curves recorded at different rates. The suitability of the proposed approach is fully demonstrated by the very good agreement between AFM data and numerically reconstructed force–indentation curves. A critical comparison of mechanical behavior of two immature ZP membranes (i.e., equine and porcine ZPs) is also carried out considering the information on the structure of these materials available from electron microscopy investigations documented in the literature.


Sign in / Sign up

Export Citation Format

Share Document