scholarly journals Microstructural Materials Design Via Deep Adversarial Learning Methodology

2018 ◽  
Vol 140 (11) ◽  
Author(s):  
Zijiang Yang ◽  
Xiaolin Li ◽  
L. Catherine Brinson ◽  
Alok N. Choudhary ◽  
Wei Chen ◽  
...  

Identifying the key microstructure representations is crucial for computational materials design (CMD). However, existing microstructure characterization and reconstruction (MCR) techniques have limitations to be applied for microstructural materials design. Some MCR approaches are not applicable for microstructural materials design because no parameters are available to serve as design variables, while others introduce significant information loss in either microstructure representation and/or dimensionality reduction. In this work, we present a deep adversarial learning methodology that overcomes the limitations of existing MCR techniques. In the proposed methodology, generative adversarial networks (GAN) are trained to learn the mapping between latent variables and microstructures. Thereafter, the low-dimensional latent variables serve as design variables, and a Bayesian optimization framework is applied to obtain microstructures with desired material property. Due to the special design of the network architecture, the proposed methodology is able to identify the latent (design) variables with desired dimensionality, as well as capturing complex material microstructural characteristics. The validity of the proposed methodology is tested numerically on a synthetic microstructure dataset and its effectiveness for microstructural materials design is evaluated through a case study of optimizing optical performance for energy absorption. Additional features, such as scalability and transferability, are also demonstrated in this work. In essence, the proposed methodology provides an end-to-end solution for microstructural materials design, in which GAN reduces information loss and preserves more microstructural characteristics, and the GP-Hedge optimization improves the efficiency of design exploration.

Author(s):  
Xiaolin Li ◽  
Zijiang Yang ◽  
L. Catherine Brinson ◽  
Alok Choudhary ◽  
Ankit Agrawal ◽  
...  

In Computational Materials Design (CMD), it is well recognized that identifying key microstructure characteristics is crucial for determining material design variables. However, existing microstructure characterization and reconstruction (MCR) techniques have limitations to be applied for materials design. Some MCR approaches are not applicable for material microstructural design because no parameters are available to serve as design variables, while others introduce significant information loss in either microstructure representation and/or dimensionality reduction. In this work, we present a deep adversarial learning methodology that overcomes the limitations of existing MCR techniques. In the proposed methodology, generative adversarial networks (GAN) are trained to learn the mapping between latent variables and microstructures. Thereafter, the low-dimensional latent variables serve as design variables, and a Bayesian optimization framework is applied to obtain microstructures with desired material property. Due to the special design of the network architecture, the proposed methodology is able to identify the latent (design) variables with desired dimensionality, as well as capturing complex material microstructural characteristics. The validity of the proposed methodology is tested numerically on a synthetic microstructure dataset and its effectiveness for materials design is evaluated through a case study of optimizing optical performance for energy absorption. Additional features, such as scalability and transferability, are also demonstrated in this work. In essence, the proposed methodology provides an end-to-end solution for microstructural design, in which GAN reduces information loss and preserves more microstructural characteristics, and the GP-Hedge optimization improves the efficiency of design exploration.


Author(s):  
Haidi Hasan Badr ◽  
Nayer Mahmoud Wanas ◽  
Magda Fayek

Since labeled data availability differs greatly across domains, Domain Adaptation focuses on learning in new and unfamiliar domains by reducing distribution divergence. Recent research suggests that the adversarial learning approach could be a promising way to achieve the domain adaptation objective. Adversarial learning is a strategy for learning domain-transferable features in robust deep networks. This paper introduces the TSAL paradigm, a two-step adversarial learning framework. It addresses the real-world problem of text classification, where source domain(s) has labeled data but target domain (s) has only unlabeled data. TSAL utilizes joint adversarial learning with class information and domain alignment deep network architecture to learn both domain-invariant and domain-specific features extractors. It consists of two training steps that are similar to the paradigm, in which pre-trained model weights are used as initialization for training with new data. TSAL’s two training phases, however, are based on the same data, not different data, as is the case with fine-tuning. Furthermore, TSAL only uses the learned domain-invariant feature extractor from the first training as an initialization for its peer in subsequent training. By doubling the training, TSAL can emphasize the leverage of the small unlabeled target domain and learn effectively what to share between various domains. A detailed analysis of many benchmark datasets reveals that our model consistently outperforms the prior art across a wide range of dataset distributions.


2021 ◽  
Vol 251 ◽  
pp. 03043
Author(s):  
Fedor Ratnikov ◽  
Alexander Rogachev

Simulation is one of the key components in high energy physics. Historically it relies on the Monte Carlo methods which require a tremendous amount of computation resources. These methods may have difficulties with the expected High Luminosity Large Hadron Collider need, so the experiment is in urgent need of new fast simulation techniques. The application of Generative Adversarial Networks is a promising solution to speed up the simulation while providing the necessary physics performance. In this paper we propose the Self-Attention Generative Adversarial Network as a possible improvement of the network architecture. The application is demonstrated on the performance of generating responses of the LHCb type of the electromagnetic calorimeter.


Author(s):  
Peetak Mitra ◽  
Niccolò Dal Santo ◽  
Majid Haghshenas ◽  
Shounak Mitra ◽  
Conor Daly ◽  
...  

The adoption of Machine Learning (ML) for building emulators for complex physical processes has seen an exponential rise in the recent years. While neural networks are good function approximators, optimizing the hyper-parameters of the network to reach a global minimum is not trivial, and often needs human knowl- edge and expertise. In this light, automatic ML or autoML methods have gained large interest as they automate the process of network hyper-parameter tuning. In addition, Neural Architecture Search (NAS) has shown promising outcomes for improving model performance. While autoML methods have grown in popularity for image, text and other applications, their effectiveness for high-dimensional, complex scientific datasets remains to be investigated. In this work, a data driven emulator for turbulence closure terms in the context of Large Eddy Simulation (LES) models is trained using Artificial Neural Networks and an autoML frame- work based on Bayesian Optimization, incorporating priors to jointly optimize the hyper-parameters as well as conduct a full neural network architecture search to converge to a global minima, is proposed. Additionally, we compare the effect of using different network weight initializations and optimizers such as ADAM, SGDM and RMSProp, to explore the best performing setting. Weight and function space similarities during the optimization trajectory are investigated, and critical differences in the learning process evolution are noted and compared to theory. We observe ADAM optimizer and Glorot initialization consistently performs better, while RMSProp outperforms SGDM as the latter appears to have been stuck at a local minima. Therefore, this autoML BayesOpt framework provides a means to choose the best hyper-parameter settings for a given dataset.


Author(s):  
Hongyou Chen ◽  
Hongjie He ◽  
Fan Chen ◽  
Yiming Zhu

Adversarial learning stability has an important influence on the generated image quality and convergence process in generative adversarial networks (GANs). Training dataset (real data) noise and the balance of game players have an impact on adversarial learning stability. In the gradient backpropagation of the discriminator, the noise samples increase the gradient variance. It can increase the uncertainty in the network convergence progress and affect stability. In the two-player zero-sum game, the game ability of the generator and discriminator is unbalanced. Generally, the game ability of the generator is weaker than that of the discriminator, which affects the stability. To improve the stability, an antinoise learning and coalitional game generative adversarial network (ANL-CG GAN) is proposed, which achieves this goal through the following two strategies. (i) In the real data loss function of the discriminator, an effective antinoise learning method is designed, which can improve the gradient variance and network convergence uncertainty. (ii) In the zero-sum game, a generator coalitional game module is designed to enhance its game ability, which can improve the balance between the generator and discriminator via a coalitional game strategy. To verify the performance of this model, the generated results of the designed GAN and other GAN models in CELEBA and CIFAR10 are compared and analyzed. Experimental results show that the novel GAN can improve adversarial learning stability, generate image quality, and reduce the number of training epochs.


Author(s):  
Conner Sharpe ◽  
Carolyn Conner Seepersad

Abstract Deep convolutional neural networks have gained significant traction as effective approaches for developing detailed but compact representations of complex structured data. Generative networks in particular have become popular for their ability to mimic data distributions and allow further exploration of them. This attribute can be utilized in engineering design domains, in which the data structures of finite element meshes for analyzing potential designs are well suited to the deep convolutional network approaches that are being developed at a rapid pace in the field of image processing. This paper explores the use of conditional generative adversarial networks (cGANs) as a means of generating a compact latent representation of structures resulting from classical topology optimization techniques. The constraints and contextual factors of a design problem, such as mass fraction, material type, and load location, can then be specified as input conditions to generate potential topologies in a directed fashion. The trained network can be used to aid concept generation, such that engineers can explore a variety of designs relevant to the problem at hand with ease. The latent variables of the generator can also be used as design parameters, and the low dimensionality enables tractable computational design without analytical sensitivities. This paper demonstrates these capabilities and discusses avenues for further developments that would enable the engineering design community to further leverage generative machine learning techniques to their full potential.


2020 ◽  
Vol 12 (19) ◽  
pp. 3152
Author(s):  
Luc Courtrai ◽  
Minh-Tan Pham ◽  
Sébastien Lefèvre

This article tackles the problem of detecting small objects in satellite or aerial remote sensing images by relying on super-resolution to increase image spatial resolution, thus the size and details of objects to be detected. We show how to improve the super-resolution framework starting from the learning of a generative adversarial network (GAN) based on residual blocks and then its integration into a cycle model. Furthermore, by adding to the framework an auxiliary network tailored for object detection, we considerably improve the learning and the quality of our final super-resolution architecture, and more importantly increase the object detection performance. Besides the improvement dedicated to the network architecture, we also focus on the training of super-resolution on target objects, leading to an object-focused approach. Furthermore, the proposed strategies do not depend on the choice of a baseline super-resolution framework, hence could be adopted for current and future state-of-the-art models. Our experimental study on small vehicle detection in remote sensing data conducted on both aerial and satellite images (i.e., ISPRS Potsdam and xView datasets) confirms the effectiveness of the improved super-resolution methods to assist with the small object detection tasks.


2020 ◽  
Vol 5 (8) ◽  
pp. 1376-1390
Author(s):  
Akshay Iyer ◽  
Yichi Zhang ◽  
Aditya Prasad ◽  
Praveen Gupta ◽  
Siyu Tao ◽  
...  

Integrating experimental data with computational methods enables multicriteria design of nanocomposites using quantitative and qualitative design variables.


Sign in / Sign up

Export Citation Format

Share Document