A Cloud Service Framework for Virtual Try-On of Footwear in Augmented Reality

Author(s):  
Chih-Hsing Chu ◽  
Chih-Hung Cheng ◽  
Han-Sheng Wu ◽  
Chia-Chen Kuo

This paper presents an experimental cloud service framework for design evaluation of personalized footwear in augmented reality (AR) via networks. The service allows users to ubiquitously perceive themselves trying on three-dimensional (3D) shoe models in a video stream. They upload a clip of feet motion recorded by a commercial depth camera to the cloud. A new clip is generated to display the try-on process and made available to specified receivers via video streaming on a mobile device. The framework design emphasizes making most use of open-source software and off-the-shelf technologies commercially available. A prototyping cloud system implementing the framework demonstrates the practical value of virtual footwear try-on as AR as a service (ARaaS). This experimental study realizes the idea of human-centric design evaluation in modern e-commerce. The cloud framework may provide a feasible example to improve the usability for real-time applications of AR.

Author(s):  
Chih-Hsing Chu ◽  
Chih-Hung Cheng ◽  
Han-Sheng Wu ◽  
Chia-Chen Kuo

This paper presents a cloud service framework for design evaluation of personalized footwear in augmented reality (AR) via networks. The service allows users to ubiquitously perceive themselves trying on 3D shoe models in a video stream. They upload a clip of feet motion recorded by a commercial depth camera to the cloud. A new clip is generated to display the try-on process and made available to specified receivers via video streaming on a mobile device. The framework design emphasizes making most use of open-source software and off-the-shelf technologies commercially available. A prototyping cloud system implementing the framework demonstrates the practical value of virtual footwear try-on as AR as a Service (ARaaS). This research realizes the idea of human-centric design evaluation in modern e-commerce. The cloud framework may provide a feasible solution to improve the usability for real-time applications of augmented reality.


2015 ◽  
Vol 2 (1) ◽  
pp. 77
Author(s):  
Tonny Hidayat

Augmented Reality adalah sebuah teknologi yang relatif baru dan masih dikembangkan sampai saat ini. Konsepnya adalah menggabungkan dimensi dunia nyata dengan dimensi 'dunia nyata' yang termediasi, atau dunia virtual, untuk menciptakan kesan bahwa dimensi dunia nyata kita diperkaya dengan objek maya tiga dimensi. Hal ini dilakukan dengan cara 'menggambar' objek tiga dimensi pada marker, yakni sebuah 'pola' dalam bingkai segi empat yang bersifat unik dan dapat dikenali oleh aplikasinya. Aplikasi yang bersangkutan menerima input berupa video stream, yang berarti menggunakan input berupa citraan dari perangkat keras yang berfungsi menangkap gambar, biasanya sebuah webcam. Karena berupa video stream, artinya gambaran yang ditangkap sebagai input akan berubah-ubah, dan program harus dapat tetap mengenali marker meskipun berubah posisi dan orientasi relatif terhadap perangkat input. Pengenalan terhadap posisi dan pergerakan ini adalah salah satu konsep Teknologi Informasi yang bernama Computer Vision, dan digunakan untuk mendeteksi pola pergerakan relatif objek terhadap kamera.Pendidikan terhadap anak harus dilakukan sedini mungkin terutama dalam hal kesehatan. Seiring dengan berkembangnya pemahaman masyarakat tentang pentingnya kesehatan gigi, banyak pihak yang telah memberikan informasi terkait kesehatan gigi di berbagai media. Tidak hanya orang dewasa yang menjadi sasaran akan tetapi juga mulai dari anak-anak sudah dikenalkan dengan pengetahuan tersebut. Karena dibutuhkan media penyampaian untuk anak maka banyak bermunculan media edukasi yang diharapkan bisamendidik anak dengan berbagai macam cara..Pemanfaatan Augmented Realitysebagai alat untuk mengedukasi anak, ini akan memberikan pandangan baru terhadap media edukasi yang ada pada saat ini, bukan hanya menggunakan objek secara nyata tapi juga bisa digunakan objek berbentuk virtual dalam penyampaian informasi. Nilai tambah dari media ini adalah mempermudah penyampaian dan membuat informasi semakin menarik terutama bagi anak.Augmented Reality is a technology that is relatively new and still being developed today. The concept is to combine real-world dimensions to the dimensions of the 'real world' are mediated, or the virtual world, to create the impression that the dimensions of the real world we are enriched by virtual three-dimensional objects. This is done by 'drawing' a three-dimensional object on the marker, which is a 'pattern' in a rectangular frame that is unique and can be recognized by the application. Pertinent application accepts input in the form of a video stream, which means using the input in the form of images of the hardware image capture function, typically a webcam. Because the form of a video stream, meaning that as the input image captured will vary, and programs must be able to recognize the markers remained unchanged despite the position and orientation relative to the input device. Introduction to the position and movement is one of the Information Technology concept called Computer Vision, and is used to detect object movement patterns relative to the camera.Education of children should be done as early as possible, especially in terms of health. Along with the development of public understanding about the importance of dental health, many people who have provided information related to dental health in a variety of media. Not only adults who were targeted but also start from the children has been introduced with such knowledge. Because it takes delivery of media for children then many emerging medium of education is expected to educate children with a variety of ways.Utilization of Augmented Reality as a tool to educate the child, this will provide a new perspective on media education that existed at this time, instead of just using the real object but also can be used in the form of a virtual object in the delivery of information. The added value of this medium is to facilitate the delivery and make the information more interesting, especially for children.


Author(s):  
Giandomenico Caruso ◽  
Samuele Polistina ◽  
Monica Bordegoni

The paper describes a technique that allows measuring and annotating real objects in an Augmented Reality (AR) environment. The technique is based on the marker tracking, and aims at enabling the user to define the three-dimensional position of points, within the AR scene, by selecting them directly on the video stream. The technique consists in projecting the points, which are directly selected on the monitor, on a virtual plane defined according to the bi-dimensional marker, which is used for the tracking. This plane can be seen as a virtual depth cue that helps the user to place these points in the desired position. The user can also move this virtual plane to place points within the whole 3D scene. By using this technique, the user can place virtual points around a real object with the aim of taking some measurements of the object, by calculating the minimum distance between the points, or in order to put some annotations on the object. Up to date, these kinds of activities can be carried out by using more complex systems or it is needed to know the shape of the real object a priori. The paper describes the functioning principles of the proposed technique and discusses the results of a testing session carried out with users to evaluate the overall precision and accuracy.


2021 ◽  
Vol 45 (5) ◽  
Author(s):  
Yuri Nagayo ◽  
Toki Saito ◽  
Hiroshi Oyama

AbstractThe surgical education environment has been changing significantly due to restricted work hours, limited resources, and increasing public concern for safety and quality, leading to the evolution of simulation-based training in surgery. Of the various simulators, low-fidelity simulators are widely used to practice surgical skills such as sutures because they are portable, inexpensive, and easy to use without requiring complicated settings. However, since low-fidelity simulators do not offer any teaching information, trainees do self-practice with them, referring to textbooks or videos, which are insufficient to learn open surgical procedures. This study aimed to develop a new suture training system for open surgery that provides trainees with the three-dimensional information of exemplary procedures performed by experts and allows them to observe and imitate the procedures during self-practice. The proposed system consists of a motion capture system of surgical instruments and a three-dimensional replication system of captured procedures on the surgical field. Motion capture of surgical instruments was achieved inexpensively by using cylindrical augmented reality (AR) markers, and replication of captured procedures was realized by visualizing them three-dimensionally at the same position and orientation as captured, using an AR device. For subcuticular interrupted suture, it was confirmed that the proposed system enabled users to observe experts’ procedures from any angle and imitate them by manipulating the actual surgical instruments during self-practice. We expect that this training system will contribute to developing a novel surgical training method that enables trainees to learn surgical skills by themselves in the absence of experts.


2019 ◽  
Vol 18 (6) ◽  
pp. e2690 ◽  
Author(s):  
F. Porpiglia ◽  
E. Checcucci ◽  
D. Amparore ◽  
F. Piramide ◽  
P. Verri ◽  
...  

2014 ◽  
Vol 513-517 ◽  
pp. 491-497
Author(s):  
Yi Wen Zhang ◽  
Wei Zhou ◽  
Qi Wang ◽  
Li Lan Chen ◽  
Jie Fang

A systematic multi-channel model paradigm for information interaction was proposed under the framework of the development of digital protection system of traditional culture. Analysis was carried out by aiming at the modular classification, interactive structure and data interface in the framework design for the information data. Attention was focused on solving such problems as the key technologies and operate mode of the interactive optimization and structural optimization for the virtual and augmented reality scene. The concept and technology of cartoon animation were analyzed. Thus, the effectiveness of the interactive technology of the system model and the advantages of the multi-channel orderly integration for information were testified.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Shih-Ting Wang ◽  
Brian Minevich ◽  
Jianfang Liu ◽  
Honghu Zhang ◽  
Dmytro Nykypanchuk ◽  
...  

AbstractVersatile methods to organize proteins in space are required to enable complex biomaterials, engineered biomolecular scaffolds, cell-free biology, and hybrid nanoscale systems. Here, we demonstrate how the tailored encapsulation of proteins in DNA-based voxels can be combined with programmable assembly that directs these voxels into biologically functional protein arrays with prescribed and ordered two-dimensional (2D) and three-dimensional (3D) organizations. We apply the presented concept to ferritin, an iron storage protein, and its iron-free analog, apoferritin, in order to form single-layers, double-layers, as well as several types of 3D protein lattices. Our study demonstrates that internal voxel design and inter-voxel encoding can be effectively employed to create protein lattices with designed organization, as confirmed by in situ X-ray scattering and cryo-electron microscopy 3D imaging. The assembled protein arrays maintain structural stability and biological activity in environments relevant for protein functionality. The framework design of the arrays then allows small molecules to access the ferritins and their iron cores and convert them into apoferritin arrays through the release of iron ions. The presented study introduces a platform approach for creating bio-active protein-containing ordered nanomaterials with desired 2D and 3D organizations.


2016 ◽  
Vol 9 (11) ◽  
pp. 4071-4085 ◽  
Author(s):  
Esteban Acevedo-Trejos ◽  
Gunnar Brandt ◽  
S. Lan Smith ◽  
Agostino Merico

Abstract. Biodiversity is one of the key mechanisms that facilitate the adaptive response of planktonic communities to a fluctuating environment. How to allow for such a flexible response in marine ecosystem models is, however, not entirely clear. One particular way is to resolve the natural complexity of phytoplankton communities by explicitly incorporating a large number of species or plankton functional types. Alternatively, models of aggregate community properties focus on macroecological quantities such as total biomass, mean trait, and trait variance (or functional trait diversity), thus reducing the observed natural complexity to a few mathematical expressions. We developed the PhytoSFDM modelling tool, which can resolve species discretely and can capture aggregate community properties. The tool also provides a set of methods for treating diversity under realistic oceanographic settings. This model is coded in Python and is distributed as open-source software. PhytoSFDM is implemented in a zero-dimensional physical scheme and can be applied to any location of the global ocean. We show that aggregate community models reduce computational complexity while preserving relevant macroecological features of phytoplankton communities. Compared to species-explicit models, aggregate models are more manageable in terms of number of equations and have faster computational times. Further developments of this tool should address the caveats associated with the assumptions of aggregate community models and about implementations into spatially resolved physical settings (one-dimensional and three-dimensional). With PhytoSFDM we embrace the idea of promoting open-source software and encourage scientists to build on this modelling tool to further improve our understanding of the role that biodiversity plays in shaping marine ecosystems.


Sign in / Sign up

Export Citation Format

Share Document