Indoor Air Temperature Analysis of Solar Heating System With Dual Heat Storage Devices

2019 ◽  
Vol 141 (5) ◽  
Author(s):  
Yu Qihui ◽  
Hao Xueqing ◽  
Tan Xin

Using solar energy for space heating is an efficient and simply way to satisfy the energy demands of buildings. In this study, a typical office building is selected as a case model to obtain indoor air temperature characteristics with dual heat storage devices. By analyzing our solar heating system, a mathematical model of the system working process is set up. Using the software matlab/simulink for simulation, the indoor air temperature characteristics in 1 day are obtained. Simulation and experimental results show good consistency. And using the mathematical model, the storage tank size is optimized to search for the minimum size for the fixed building. Based on our analysis, the optimum ratio of storage tank A volume and collector field area is 0.11 m. This research can be a good reference for the design of the solar heating system.

2020 ◽  
pp. 31-47
Author(s):  
Alla Yovchenko ◽  
Sergii Bespalko ◽  
Oksana Tryhub ◽  
Sviatoslav Poliakov ◽  
Guy Baret ◽  
...  

The paper presents the study results of the stability and heat storage capacity of paraffin-in-water phase change suspensions (PCSs) obtained by the homogenization of paraffin and water in the developed rotary hydrodynamic homogenizer. The optimal concentration of components for obtaining stable paraffin-in-water suspensions is found. It is shown that the stable PCSs in the form of pastes, gels, and liquids can be obtained depending on the concentration of water, paraffin, and the surface active agent (SAA) as well as its type. In addition, the scheme of the solar heating system with the heat storage tank where the PCS functions both as the heat transfer fluid and the heat storage media is presented. It is shown that the use of PCS in the domestic solar heating system allowed the heat storage capacity of the storage tank to be increased by 25% as a result of the high fusion heat of paraffin and the high value of the water specific heat capacity. The estimation of the saving rate from applying fluid PCS as a heat storage medium is also presented and discussed.


2015 ◽  
Vol 121 ◽  
pp. 1356-1364 ◽  
Author(s):  
Tao Li ◽  
Yanfeng Liu ◽  
Dengjia Wang ◽  
Kaifeng Shang ◽  
Jiaping Liu

2021 ◽  
Vol 10 (4) ◽  
pp. e44310414300
Author(s):  
Anyele Albuquerque Lima ◽  
Izabelly Carollynny Maciel Nunes ◽  
José Leandro da Silva Duarte ◽  
Lucas Meili ◽  
Patricia de Carvalho Nagliate ◽  
...  

Background: SARS-CoV-2 is the infectious agent responsible for COVID-19, its transmission occurs through the release of respiratory droplets and aerosols. Aim: Identify the main characteristics of SARS-CoV-2 aerosols dispersion in indoor air. Methods: Scoping Review was conducted using the databases: National Library of Medicines – MEDLINE/Pubmed, Scopus, Web of Science, Virtual Health Library (VHL) and Cochrane Library, the search in gray literature was performed on Google Scholar, OpenGrey and Grey Literature Report, from March to September 2020. The descriptors used were "coronavirus" and "aerosol". Data were selected and screened following the protocol established by the The Joanna Briggs Institute, PRISMA flow diagram and EndNote reference management tool. Findings: Ten papers were selected, which presented characteristics that could influence the SARS-CoV-2 aerosols dispersion, with highlight to: aerosol origin; viral load identified in the air (2.86 copies/liter of air); aerosol particle size with viral load (0.25 μm); dispersion (10.00 m); air stay time (3 h); influence of air temperature and relative humidity. Conclusion: Aerosol particles containing SARS-CoV-2 may have infectious viral charge, presenting a minimum size up to 0.25 μm, being able to reach up to 10 m of distance and survive in the air for a few hours. The variables air temperature and relative humidity did not present consistent evidence to influence the dispersion of SARS-CoV-2 aerosols.


2020 ◽  
Vol 165 ◽  
pp. 114617
Author(s):  
Jiarong Li ◽  
Xiangdong Li ◽  
Ruiqing Du ◽  
Yong Wang ◽  
Jiyuan Tu

2013 ◽  
Vol 291-294 ◽  
pp. 158-161
Author(s):  
Zhen Ying Mu

This paper introduces the design of a solar heating system integrated latent heat store heat exchanger. Aiming at studying the system solar fraction, mathematical models are established for describing solar collector, latent heat store heat exchanger, users’ heating thermal load, and the system in whole. Studies are carried out based on these models. The results show that there are some key influencing factors on solar fraction, including solar irradiance, collector area, collector inclination angle, the difference value between collector inlet fluid temperature and ambient air temperature. Among these, collector inclination angle is the most significant one. If the values between collector inlet fluid temperature and ambient air temperature have big difference, it’ll cause adverse effects. As long as the operation requirements are met, lower collector inlet fluid temperature and suitable ambient air temperature are reasonable conditions for application. The research results provide guide for the system application in engineering.


2014 ◽  
Vol 672-674 ◽  
pp. 21-25
Author(s):  
Liang Zhang ◽  
Peng Xu ◽  
Jia Chen Mao ◽  
Xu Tang

A seasonal solar soil heat storage (SSSHS) system applied in greenhouse heating has been designed and introduced. The system consists of solar collector subsystem, soil heat storage subsystem, greenhouse heating subsystem, hydronic subsystem and control subsystem. By applying soil heat storage, solar energy stored in the soil under the greenhouse can be transferred and utilized in winter to realize the utilization of cross-seasonal energy. TRNSYS is used to simulate the process and effect in the system of the solar energy collection and soil heat storage in Shanghai, and the simulation is calibrated to improve the precision of the TRNSYS model. When the indoor air temperature of the greenhouse is kept at 12°C throughout the year, the energy saving by using the SSSHS system in Shanghai can be 46.2kWh/(m2∙year).


Sign in / Sign up

Export Citation Format

Share Document