Co-Simulation of Multibody Systems With Contact Using Reduced Interface Models

Author(s):  
Albert Peiret ◽  
Francisco González ◽  
József Kövecses ◽  
Marek Teichmann

Abstract Co-simulation techniques enable the coupling of physically diverse subsystems in an efficient and modular way. Communication between subsystems takes place at discrete-time instants and is limited to a given set of coupling variables, while the internals of each subsystem remain undisclosed and are generally not accessible to the rest of the simulation environment. In noniterative co-simulation schemes, commonly used in real-time applications, this may lead to the instability of the numerical integration. The stability of the integration in these cases can be enhanced using interface models, i.e., reduced representations of one or more subsystems that provide physically meaningful input values to the other subsystems between communication points. This work describes such an interface model that can be used to represent nonsmooth mechanical systems subjected to unilateral contact and friction. The dynamics of the system is initially formulated as a mixed linear complementarity problem (MLCP), from which the effective mass and force terms of the interface model are derived. These terms account for contact detachment and stick–slip transitions, and can also include constraint regularization in case of redundancy in the system. The performance of the proposed model is shown in several challenging examples of noniterative multirate co-simulation schemes of a mechanical system with hydraulic components, which feature faster dynamics than the multibody subsystem. Using an interface model improves simulation stability and allows for larger integration step-sizes, thus resulting in a more efficient simulation.

Author(s):  
Albert Peiret ◽  
József Kövecses ◽  
Francisco González ◽  
Marek Teichmann

Abstract Co-simulation techniques enable the coupling of physically diverse subsystems in an efficient and modular way. Complex engineering applications can be simulated in co-simulation setups, in which each subsystem is solved and integrated using numerical methods tailored to its physical behaviour. Co-simulation implies that the communication between subsystems takes place at discrete-time instants and is limited to a given set of coupling variables, while the internals of each subsystem are generally not accessible to the rest of the simulation environment. In non-iterative co-simulation schemes, this may lead to the instability of the integration. Increasingly demanding requirements in the simulation of machinery have led to the coupling, in real-time co-simulation setups, of multibody models of mechanical systems to computational representations of non-mechanical subsystems, such as hydraulics and electronics. Often, these feature faster dynamics than their mechanical counterparts, which leads to the use of multirate integration in non-iterative co-simulation environments. The stability of the integration in these cases can be enhanced using interface models, i.e., reduced representations of the multibody system, to provide meaningful input values to faster subsystems between communication points. This work describes such interface models that can be used to represent nonsmooth mechanical systems subjected to unilateral contact and friction.


Author(s):  
Weitao Chen ◽  
Shenhai Ran ◽  
Canhui Wu ◽  
Bengt Jacobson

AbstractCo-simulation is widely used in the industry for the simulation of multidomain systems. Because the coupling variables cannot be communicated continuously, the co-simulation results can be unstable and inaccurate, especially when an explicit parallel approach is applied. To address this issue, new coupling methods to improve the stability and accuracy have been developed in recent years. However, the assessment of their performance is sometimes not straightforward or is even impossible owing to the case-dependent effect. The selection of the coupling method and its tuning cannot be performed before running the co-simulation, especially with a time-varying system.In this work, the co-simulation system is analyzed in the frequency domain as a sampled-data interconnection. Then a new coupling method based on the H-infinity synthesis is developed. The method intends to reconstruct the coupling variable by adding a compensator and smoother at the interface and to minimize the error from the sample-hold process. A convergence analysis in the frequency domain shows that the coupling error can be reduced in a wide frequency range, which implies good robustness. The new method is verified using two co-simulation cases. The first case is a dual mass–spring–damper system with random parameters and the second case is a co-simulation of a multibody dynamic (MBD) vehicle model and an electric power-assisted steering (EPAS) system model. Experimental results show that the method can improve the stability and accuracy, which enables a larger communication step to speed up the explicit parallel co-simulation.


1991 ◽  
Vol 56 (1) ◽  
pp. 20-41 ◽  
Author(s):  
Dieter Britz ◽  
Merete F. Nielsen

In finite difference simulations of electrochemical transport problems, it is usually tacitly assumed that λ, the stability factor Dδt/δx2, should be set as high as possible. Here, accuracy contours are shown in (nT, λ) space, where nT is he number of finite difference steps per unit (dimensionless) time. Examples are the Cottrell experiment, simple chronopotentiometry and linear sweep voltammetry (LSV) on a reversible system. The simulation techniques examined include the standard explicit (point- and box-) methods as well as Runge-Kutta, Crank-Nicolson, hopscotch and Saul’yev. For the box method, the two-point current approximation appears to be the most appropriate. A rational algorithm for boundary concentrations with explicit LSV simulations is discussed. In general, the practice of choosing as high a λ value when using the explicit techniques, is confirmed; there are practical limits in all cases.


Electronics ◽  
2018 ◽  
Vol 7 (11) ◽  
pp. 333
Author(s):  
Jian Le ◽  
Hao Zhang ◽  
Cao Wang ◽  
Xingrui Li ◽  
Jiangfeng Zhu

To enhance the stability and accuracy of the digital-physical hybrid simulation system of a modular multilevel converter-based high voltage direct current (MMC-HVDC) system, this paper presents an improved power interface modeling algorithm based on ideal transformer method (ITM). By analyzing the stability condition of a hybrid simulation system based on the ITM model, the current of a so-called virtual resistance is added to the control signal of the controlled current source in the digital subsystem, and the stability of the hybrid simulation system with the improved power interface model is analyzed. The value of the virtual resistance is optimized by comprehensively considering system stability and simulation precision. A two-terminal bipolar MMC-HVDC simulation system based on the proposed power interface model is established. The comparisons of the simulation results verify that the proposed method can effectively improve the stability of the hybrid simulation system, and at the same time has the advantages of high simulation accuracy and easy implementation.


Author(s):  
Lisle B. Hagler ◽  
Per G. Reinhall

Abstract This paper presents a detailed analysis of the dynamic behavior of a single rotor/stator brake system. Two separate mathematical models of the brake are considered. First, a non-rotational model is constructed with the purpose of showing that friction induced vibration can occur in the stator without assuming stick-slip behavior and a velocity dependent friction coefficient. Self-induced vibrations are analyzed via the application of the method of multiple scales. The stability boundaries of the primary resonance, as well as the super-harmonics and sub-harmonics are determined. Secondly, rotational effects are investigated by considering a mathematical brake model consisting of a spinning rotor engaging against a flexible stator. Again, a constant friction coefficient is assumed. The stability of steady whirl is determined as a function of the system parameters. We demonstrate that only forward whirl is stable for no-slip motion of the rotor. The interactions between chatter, squeal, and rotor whirl are investigated through numeric simulation. It is shown that rotor whirl can be an important source of the torsional oscillations (squeal) of the stator and that the settling time to no-slip decreases as the ratio of the stator to rotor stiffness is increased.


1988 ◽  
Vol 110 (1) ◽  
pp. 69-72 ◽  
Author(s):  
I. L. Maksimov

The stability of sliding has been studied, taking into account frictional heating effect and friction coefficient dependence upon the interface temperature and sliding velocity. The collective—thermal and mechanical—sliding instability has been found to exist; instability emergence conditions and dynamics (both in linear and nonlinear stages) have been determined. It is shown that both the threshold and the dynamics of thermofrictional instability differ qualitatively from the analogous characteristics of “stick-slip” phenomenon. Namely, the oscillational instability behavior due to the energy exchange between thermal and mechanical modes has been found to occur under certain initial conditions; the velocities range has been determined for which collective sliding instability may occur whereas the stick-slips would be not possible. The nonlinear analysis of instability evolution has been carried out for pairs with the negative thermal-frictional sliding characteristics, the final stage of sliding dynamics has been described. It is found that stable thermofrictional oscillations can occur on the nonlinear stage of sliding instability development; the oscillations frequency and amplitude have been determined. The possibility has been discussed of the experimental observation of new dynamical sliding phenomena at low temperatures.


2015 ◽  
Vol 47 (1) ◽  
pp. 146-163 ◽  
Author(s):  
Hironobu Sakagawa

We consider a class of Gaussian processes which are obtained as height processes of some (d + 1)-dimensional dynamic random interface model on ℤd. We give an estimate of persistence probability, namely, large T asymptotics of the probability that the process does not exceed a fixed level up to time T. The interaction of the model affects the persistence probability and its asymptotics changes depending on the dimension d.


2013 ◽  
Vol 353-356 ◽  
pp. 751-755 ◽  
Author(s):  
Yong Cheng Yan ◽  
Xian Zhang Ling ◽  
Feng Zhang ◽  
Jia Hui Wang

Taking section W400 of Fushun west open-pit coal mine for the research, the interface model of fracture zone and surrounding rock was established. FLAC3D is used to analysis the influence of excavation and backfill of open-fit coal mine to the slope stability and deformation. The numerical results and analysis show that: (1) when the open-pit coal mine slope is excavated to final production line, the safety coefficient is 2.98, with the excavation, the deformation of the Fushun No.1 Refinery Factory area increases. (2) With the increase of backfilling, the slope coefficient increases to 3.32, this will reduce the deformation of the Fushun No.1 Refinery Factory area. Furthermore, the positions of the dangerous slip surface and serious deformation part of factory area should be regards as key areas. These conclusions could provide technical basis for the stability analysis of Fushun west open-pit coal mine.


1997 ◽  
Vol 119 (3) ◽  
pp. 486-490 ◽  
Author(s):  
Jia-Yush Yen ◽  
Chih-Jung Huang ◽  
Shu-Shung Lu

This paper presents the precision control of drive devices with significant stick-slip friction. The controller design follows the Pseudo-Derivative Feedback (PDF) control algorithm. Using the second order system model, the PDF controller offers arbitrary pole placement. In this paper, the stability proof for the controller with stick-slip friction is presented. On the basis of this proof, the stability criteria are derived. The paper also includes both the computer simulation and the experimental works to confirm the theoretical result. The experiments conducted on a Traction Type Drive Device (TTDD) shows that control accuracy of as high as ±1 arc – second is achieved.


Sign in / Sign up

Export Citation Format

Share Document