Mechanism-Based Energy Regularization in Computational Modeling of Quasibrittle Fracture

2020 ◽  
Vol 87 (9) ◽  
Author(s):  
Anna Gorgogianni ◽  
Jan Eliáš ◽  
Jia-Liang Le

Abstract Quasibrittle materials are featured by a strain-softening constitutive behavior under many loading scenarios, which could eventually lead to localization instability. It has long been known that strain localization would result in spurious mesh sensitivity in finite element (FE) simulations. Previous studies have shown that, for the case of fully localized damage, the mesh sensitivity can be mitigated through energy regularization of the material constitutive law. However, depending on the loading configuration and structural geometry, quasibrittle structures could exhibit a complex damage process, which involves both localized and diffused damage patterns at different stages of loading. This study presents a generalized energy regularization method that considers the spatial and temporal evolution of damage pattern. The method introduces a localization parameter, which describes the local damage pattern. The localization parameter governs the energy regularization of the constitutive model, which captures the transition from diffused to localized damage during the failure process. The method is cast into an isotropic damage model, and is further extended to rate-dependent behavior. The energy regularization scheme is directly incorporated into the kinetics of damage growth. The model is applied to simulate static and dynamic failures of ceramic specimens. It is shown that the present model is able to effectively mitigate the spurious mesh sensitivity in FE simulations of both types of failure. The present analysis demonstrates the essential role of mechanism-based energy regularization of constitutive relation in FE simulations of quasibrittle fracture.

Polymers ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1321 ◽  
Author(s):  
Dery Torres ◽  
Shu Guo ◽  
Maria-Pilar Villar ◽  
Daniel Araujo ◽  
Rafael Estevez

Polymer-based composites are becoming widely used for structural applications, in particular in the aeronautic industry. The present investigation focuses on the mechanical integrity of an epoxy resin of which possible damage results in limitation or early stages of dramatic failure. Therefore, a coupled experimental and numerical investigation of failure in an epoxy resin thermoset is carried out that opens the route to an overall micromechanical analysis of thermoset-based composites. In the present case, failure is preceded by noticeable plasticity in the form of shear bands similar to observations in ductile glassy polymers. Thus, an elastic-visco-plastic constitutive law initially devoted to glassy polymer is adopted that captures the rate- dependent yield stress followed by softening and progressive hardening at continued deformation. A general rate-dependent cohesive model is used to describe the failure process. The parameters involved in the description are carefully identified and used in a finite element calculation to predict the material’s toughness for different configurations. Furthermore, the present work allows investigation of nucleation and crack growth in such resins. In particular, a minimum toughness can be derived from the model which is difficult to evaluate experimentally and allows accounting for the notch effect on the onset of failure. This is thought to help in designing polymer-based composites.


Author(s):  
Zewu Wang ◽  
Guojing Zhang ◽  
Peiqi Liu ◽  
Liangzhi Xia

Fiber is widely used as a reinforcing material on the gas cylinder owing to good stiffness-to-weight and designability as well as high strength. However, it is difficult to analyze the failure process of a full-wrapped composite gas cylinder because of the anisotropy of composite material and complexity of a full-wrapped geometric structure. In this study, the three dimensional (3D) numerical model of a full-wrapped gas cylinder was first developed and used for calculating its stress distribution. And then the Hashin failure mode and reduction factor of elastic modulus were integrated into the numerical model by using a user subroutine. Lastly, the progressive damage process of the gas cylinder was analyzed in detail under overload conditions. The results indicated that the proposed progressive damage model could not only reproduce the damage process of the full-wrapped gas cylinder, but also predict the critical bursting pressure. This work will in the future help to guide the calculation of load-carrying capacity and failure analysis of the composite gas cylinder.


2017 ◽  
Vol 62 (4) ◽  
pp. 753-774
Author(s):  
M. Abdia ◽  
H. Molladavoodi ◽  
H. Salarirad

Abstract The rock materials surrounding the underground excavations typically demonstrate nonlinear mechanical response and irreversible behavior in particular under high in-situ stress states. The dominant causes of irreversible behavior are plastic flow and damage process. The plastic flow is controlled by the presence of local shear stresses which cause the frictional sliding. During this process, the net number of bonds remains unchanged practically. The overall macroscopic consequence of plastic flow is that the elastic properties (e.g. the stiffness of the material) are insensitive to this type of irreversible change. The main cause of irreversible changes in quasi-brittle materials such as rock is the damage process occurring within the material. From a microscopic viewpoint, damage initiates with the nucleation and growth of microcracks. When the microcracks length reaches a critical value, the coalescence of them occurs and finally, the localized meso-cracks appear. The macroscopic and phenomenological consequence of damage process is stiffness degradation, dilatation and softening response. In this paper, a coupled elastoplastic-logarithmic damage model was used to simulate the irreversible deformations and stiffness degradation of rock materials under loading. In this model, damage evolution & plastic flow rules were formulated in the framework of irreversible thermodynamics principles. To take into account the stiffness degradation and softening on post-peak region, logarithmic damage variable was implemented. Also, a plastic model with Drucker-Prager yield function was used to model plastic strains. Then, an algorithm was proposed to calculate the numerical steps based on the proposed coupled plastic and damage constitutive model. The developed model has been programmed in VC++ environment. Then, it was used as a separate and new constitutive model in DEM code (UDEC). Finally, the experimental Oolitic limestone rock behavior was simulated based on the developed model. The irreversible strains, softening and stiffness degradation were reproduced in the numerical results. Furthermore, the confinement pressure dependency of rock behavior was simulated in according to experimental observations.


2021 ◽  
pp. 105678952110014
Author(s):  
Jichang Wang ◽  
Xiaoming Guo ◽  
Nailong Zhang

In this research, experiments and numerical simulations are employed to research the failure process of concrete. Fracture experiments on three-point bending (TPB) concrete beams with a prefabricated edge notch at the middle of the beam bottom are performed using a modified rigid testing instrument. The characteristics of the crack and section are analyzed, including the crack tensile opening displacement, crack length and width, and crack faces characteristics. Also, the full curves of the force-crack tensile opening displacement (CMOD) and force-deflection of the TPB beams with the prefabricated edge notch after breakage are obtained. The phase field (PF) damage model is applied to the mixed-mode and mode-I failure processes of concrete structures through the ABAQUS subroutine user defined element (UEL). The crack path and the full curves of force-CMOD and force-deflection obtained by numerical calculations are consistent with the experimental results and the calculated results of other researchers. The influences of the mesh sizes, initial lengths, and notched depths on the TPB beam of concrete are also analyzed.


2001 ◽  
Vol 695 ◽  
Author(s):  
Y.-L. Shen ◽  
U. Ramamurty

ABSTRACTThe constitutive behavior of passivated copper films is studied. Stresses in copper films of thickness ranging from 1000 nm to 40 nm, passivated with silicon oxide on a quartz or silicon substrate, were measured using the curvature method. The thermal cycling spans a temperature range from - 196 to 600°C. It is seen that the strong relaxation at high temperatures normally found in unpassivated films is nonexistent for passivated films. The copper film did not show any rate-dependent effect over a range of heating/cooling rate from 5 to 25°C/min. Further analyses showed that significant strain hardening exists during the course of thermal loading. In particular, the measured stress- temperature response can only be fitted with a kinematic hardening model, if a simple constitutive law within the continuum plasticity framework is to be used. The analytic procedures for extracting the film properties are presented. Implications to stress modeling of copper interconnects in actual devices are discussed.


2010 ◽  
Vol 26 (4) ◽  
pp. N23-N27 ◽  
Author(s):  
K. Aluru ◽  
F.-L. Wen ◽  
Y.-L. Shen

ABSTRACTA numerical study is undertaken to simulate failure of solder joint caused by cyclic shear deformation. A progressive ductile damage model is incorporated into the rate-dependent elastic-viscoplastic finite element analysis, resulting in the capability of simulating damage evolution and eventual failure through crack formation. It is demonstrated that quantitative information of fatigue life, as well as the temporal and spatial evolution of fatigue cracks, can be explicitly obtained.


2021 ◽  
Vol 2101 (1) ◽  
pp. 012073
Author(s):  
Xueyao Hu ◽  
Jiaojiao Tang ◽  
Wei Xiao ◽  
Kepeng Qu

Abstract A progressive damage model was presented for carbon fiber woven composites under low velocity impact, considering the strain rate sensitivity of both mechanical properties and failure mechanisms. In this model, strain rate dependency of elastic modulus and nominal strength along in-plane direction are considered. Based on the Weibull distribution, stiffness progressive degradation is conducted by introducing strain rate dependent damage variables for distinct damage modes. With the model implemented in ABAQUS/Explicit via user-defined material subroutine (VUMAT), the mechanical behavior and possible damage modes of composites along in-plane direction can be determined. Furthermore, a bilinear traction separation model and a quadratic stress criterion are applied to predict the initiation and evolution of interlaminar delamination. Comparisons are made between the experimental results and numerical simulations. It is shown that the mechanical response and damage characteristics under low velocity impact, such as contact force history and delamination, are more consistent with the experimental results when taken the strain rate effect into consideration.


2020 ◽  
Author(s):  
Chuang Liu ◽  
Dongzhi Sun ◽  
Xianfeng Zhang ◽  
Florence Andrieux ◽  
Tobias Gerster

Abstract Cast iron alloys with low production cost and quite good mechanical properties are widely used in the automotive industry. To study the mechanical behavior of a typical ductile cast iron (GJS-450) with nodular graphite, uni-axial quasi-static and dynamic tensile tests at strain rates of 10− 4, 1, 10, 100, and 250 s− 1 were carried out. In order to investigate the effects of stress state, specimens with various geometries were used in the experiments. Stress–strain curves and fracture strains of the GJS-450 alloy in the strain-rate range of 10− 4 to 250 s− 1 were obtained. A strain rate-dependent plastic flow law based on the Voce model is proposed to describe the mechanical behavior in the corresponding strain-rate range. The deformation behavior at various strain rates is observed and analyzed through simulations with the proposed strain rate-dependent constitutive model. The available damage model from Bai and Wierzbicki is extended to take the strain rate into account and calibrated based on the analysis of local fracture strains. The validity of the proposed constitutive model including the damage model was verified by the corresponding experimental results. The results show that the strain rate has obviously nonlinear effects on the yield stress and fracture strain of GJS-450 alloys. The predictions with the proposed constitutive model and damage models at various strain rates agree well with the experimental results, which illustrates that the rate-dependent flow rule and damage models can be used to describe the mechanical behavior of cast iron alloys at elevated strain rates.


Sign in / Sign up

Export Citation Format

Share Document