Nonlinear Response Identification of an Asymmetric Bistable Harvester Excited at Different Bias Angles by Multiscale Entropy and Recurrence Plot

2020 ◽  
Vol 15 (9) ◽  
Author(s):  
Wei Wang ◽  
Junyi Cao ◽  
Chris R. Bowen ◽  
Grzegorz Litak

Abstract Due to their high sensitivity to excitations with low intensity, bistable energy harvesting systems have received significant attention. In practical applications, it is difficult to achieve a bistable energy harvester (BEH) with a perfectly symmetric potential energy function. Moreover, gravity acts to exert a significant influence on the output response of a BEH oscillator when excited at different bias angles. Therefore, the experimental output voltage time-series of an asymmetric potential BEH are examined in this paper. The BEH studied here was composed of a cantilever beam, two piezo-electric layers at the root and two magnets at the end, and was subjected to harmonic excitations at different bias angles. The energy harvesting system exhibited intrawell, periodic, and chaotic snap-through vibrational patterns under different excitation frequencies at different bias angles explored. To better understand the multiple dynamic behaviors of the system corresponding to different power outputs, we identify the output voltage response by the methods of multiscale entropy (MSE) and recurrence plots. Results indicate that periodic and chaotic vibrational patterns can be readily distinguished by the methods employed. Furthermore, it is demonstrated that the bias angle had a significant influence on the output power of the asymmetric potential BEH.

Author(s):  
Wei Wang ◽  
Junyi Cao ◽  
Chris R. Bowen ◽  
Grzegorz Litak

Abstract Due to their high sensitivity to excitations with low intensity, bistable energy harvesting systems have received significant attention. In practical applications, it is difficult to achieve a bistable energy harvester (BEH) with a perfectly symmetric potential energy function. Moreover, gravity acts to exert a significant influence on the output response of a BEH oscillator when excited at different bias angles. Therefore, the experimental output voltage time-series of an asymmetric potential BEH are examined in this paper. The BEH studied here is composed of a cantilever beam, two piezoelectric layers at the root and two magnets at the end, and subjected to harmonic excitations at different bias angles. The energy harvesting system exhibited intra-well, periodic and chaotic snap-through vibrational patterns under different excitation frequencies at different bias angles. To better understand the multiple dynamic behaviors of the system corresponding to different power outputs, we identified the output voltage response by the methods of multiscale entropy and recurrence plots. Results indicate that periodic and chaotic vibrational patterns can be readily distinguished by the methods employed. Furthermore, it is demonstrated that the bias angle had a significant influence on the output power of the asymmetric potential BEH.


2019 ◽  
Vol 30 (7) ◽  
pp. 998-1009 ◽  
Author(s):  
XF Zhang ◽  
HS Tzou

Based on the electromechanical coupling of piezoelectricity, a piezoelectric ring energy harvester is designed and tested in this study, such that the harvester can be used to power electric devices in the closed-circuit condition. Output energies across the external resistive load are evaluated when the ring energy harvester is subjected to harmonic excitations, and various design parameters are discussed to maximize the power output. In order to validate the theoretical energy harvesting results, laboratory experiments are conducted. Comparing experiment results with theoretical ones, the errors between them are under 10% for the output voltage. Laboratory experiments demonstrate that the ring energy harvester is workable in practical applications.


2014 ◽  
Vol 931-932 ◽  
pp. 920-924
Author(s):  
Kei Eguchi ◽  
Ichirou Oota ◽  
Shinya Terada ◽  
Kuniaki Fujimoto

For energy-harvesting systems utilizing thermoelectric energy, a dual Fibonacci converter using power saving techniques is proposed. Compared with conventional converters, the proposed converter can provide higher output voltages without magnetic components. The output voltage of the proposed converter is expressed by the k-step (2, 3, 4 ...) Fibonacci numbers. Furthermore, a novel control technique is proposed to utilize the energy stored in stray parasitic capacitances effectively. The result of simulation program with integrated circuit emphasis (SPICE) simulations shows that the proposed converter can provide higher output voltages than conventional converters. Furthermore, more than 8.4% of power efficiency is improved by the proposed technique.


Author(s):  
Heonjun Yoon ◽  
Byeng D. Youn ◽  
Chulmin Cho

Energy harvesting (EH), which scavenges electric power from ambient, otherwise wasted, energy sources, has received considerable attention for the purpose of powering wireless sensor networks and low-power electronics. Among ambient energy sources, widely available vibration energy can be converted into electrical energy using piezoelectric materials that generate an electrical potential in response to applied mechanical stress. As a basis for designing a piezoelectric energy harvester, an analytical model should be developed to estimate electric power under a given vibration condition. Many analytical models under the assumption of the deterministic excitation cannot deal with random nature in vibration signals, although the randomness considerably affects variation in harvestable electrical energy. Thus, predictive capability of the analytical models is normally poor under random vibration signals. Such a poor power prediction is mainly caused by the variation of the dominant frequencies and their peak acceleration levels. This paper thus proposes the three-step framework of the stochastic piezoelectric energy harvesting analysis under non-stationary random vibrations. As a first step, the statistical time-frequency analysis using the Wigner-Ville spectrum was used to estimate a time-varying power spectral density (PSD) of an input random excitation. The second step is to employ an existing electromechanical model as a linear operator for calculating the output voltage response. The final step is to estimate a time-varying PSD of the output voltage response from the linear relationship. Then, the expected electric power was estimated from the autocorrelation function that is inverse Fourier transform of the time-varying PSD of the output voltage response. Therefore, the proposed framework can be used to predict the expected electric power under non-stationary random vibrations in a stochastic manner.


RSC Advances ◽  
2015 ◽  
Vol 5 (8) ◽  
pp. 5941-5945 ◽  
Author(s):  
Y. Qiu ◽  
D. C. Yang ◽  
B. Yin ◽  
J. X. Lei ◽  
H. Q. Zhang ◽  
...  

Branched ZnO nanotrees have been successfully synthesized on flexible fiber-paper substrates for realizing high-performance piezoelectric nanogenerators. And the output voltage of the NG increased to 0.1 V, enough to power some micro/nano devices.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 439-446
Author(s):  
Gildas Diguet ◽  
Gael Sebald ◽  
Masami Nakano ◽  
Mickaël Lallart ◽  
Jean-Yves Cavaillé

Magneto Rheological Elastomers (MREs) are composite materials based on an elastomer filled by magnetic particles. Anisotropic MRE can be easily manufactured by curing the material under homogeneous magnetic field which creates column of particles. The magnetic and elastic properties are actually coupled making these MREs suitable for energy conversion. From these remarkable properties, an energy harvesting device is considered through the application of a DC bias magnetic induction on two MREs as a metal piece is applying an AC shear strain on them. Such strain therefore changes the permeabilities of the elastomers, hence generating an AC magnetic induction which can be converted into AC electrical signal with the help of a coil. The device is simulated with a Finite Element Method software to examine the effect of the MRE parameters, the DC bias magnetic induction and applied shear strain (amplitude and frequency) on the resulting electrical signal.


Sign in / Sign up

Export Citation Format

Share Document