Non-Contact Measurement of Residual Magnetization Caused by Plastic Deformation of Steel

Author(s):  
Aroba Saleem ◽  
P. Ross Underhill ◽  
Thomas W. Krause

Abstract Pipelines are the primary means of land transportation of oil and gas globally, and pipeline integrity is, therefore, of high importance. Failures in pipelines may occur due to internal and external stresses that produce stress concentration zones, which may cause failure by stress corrosion cracking. Early detection of stress concentration zones could facilitate the identification of potential failure sites. Conventional non-destructive testing (NDT) methods, such as magnetic flux leakage, have been used to detect defects in pipelines; however, these methods cannot be effectively used to detect zones of stress concentration. In addition, these methods require direct contact, with access to the buried pipe. Metal magnetic memory (MMM) is an emerging technology, which has the potential to characterize the stress state of underground pipelines from above ground. The present paper describes magnetic measurements performed on steel components, such as bars and tubes, which have undergone changing stress conditions. It was observed that plastic deformation resulted in the modification of measured residual magnetization in steels. In addition, an exponential decrease in signal with the distance of the sensor from the sample was observed. Results are attributed to changes in the local magnetic domain structure in the presence of stress but in the absence of an applied field.

2020 ◽  
Vol 62 (7) ◽  
pp. 422-427
Author(s):  
Wei Zhao ◽  
Shuting Wang ◽  
Yaozhong Li ◽  
Lunhong Liu

Stress concentration and microscopic defects inside a component can cause the failure of equipment and mechanical structures, and traditional non-destructive testing (NDT) methods are not able to completely solve this problem. The magnetomechanical effect organically combines the magnetic field and stress, making it an important approach for detecting stress concentration and microscopic defects in a component. The magnetomechanical model proposed by Jiles can explain the non-linear relationship between stress and magnetic induction, but it fails to explain the asymmetry in the change of magnetisation under the conditions of tensile and compressive stress. A general nonlinear magnetomechanical model proposed by Shi can more precisely explain the magnetomechanical effect, but with complex equations. Using a more precise equation for magnetostrictive strain and taking into account the effects of the demagnetising field and a linear stress-dependent term on the magnetomechanical effect, this paper proposes a concise and accurate model based on the merits of the two methods. This theoretical model can demonstrate the magnetomechanical effect more accurately than Jiles' model and is easier to solve and apply than Shi's model. This model offers the possibility of quantitative measurement of stress concentration by magnetic measurements.


2021 ◽  
Vol 3 (12) ◽  
Author(s):  
N. J. Montes de Oca-Mora ◽  
R. M. Woo-Garcia ◽  
R. Juarez-Aguirre ◽  
A. L. Herrera-May ◽  
A. Sanchez-Vidal ◽  
...  

AbstractFlaws or cracks are one of the major failures in oil and gas pipeline networks. The early detection of these failures is very important for the safety of the industry, and this last requires of analysis for non-destructive testing (NDT), which is reliable, inexpensive and easy to implement. In this paper, we propose the development of an embedded prototype mounted on a mobile robot for the inspection of defects in ferromagnetic plates. This prototype has two embedded systems (control and data acquisition), which are based on a microcontroller of 8 and 32 bits, respectively. On the one hand, the first system for control has the logic to govern the sensors and motors that will allow to the robot moves with autonomous way during 45 min. While, the second system presents an algorithm for storing, processing and sending the data obtained from the sensors, being able to measure variations in the magnetic field in the order of 0.1 µT. Magnetic-field reading tests have been carried out on control ASTM A-27 ferromagnetic plates, obtaining experimental response in the 3 axes of the magnetic domains, which is very close to the expected results by the magnetic-flux density model that is calculated from the fields E and B derived from the equations of a Hertz dipole, and developed in the high-level Python programming language. The prototype proposed for NDT can detect geometric defects in the range of millimeters, producing changes in the density of the magnetic field in the order of thousands of µT.


2011 ◽  
Vol 80-81 ◽  
pp. 1150-1154
Author(s):  
Qing Song Tu ◽  
Wei Min Zhang ◽  
Li Huang ◽  
Cheng Feng Chen ◽  
Qiu Yong

The relations between stresses and leakage magnetic signal of concentration area of the airplane’s landing gear under varying load were studied. The finite element method was used to calculate the stress of axle under different conditions; An experiment was designed to simulate the stress status under the bending moment, the slight magnetic signals on specimen were measured, and the relation of the signals and stress was studied. The new testing method was explained with the theory of ferromagnetic and the significance of this technique for detecting defects of the airplane structural part was discussed. The safety of airplane’s main bearing parts plays an important role during its operation and it often comes to bad situation of fatigue damage for stress concentration [1, 2]. To prevent the breaking down of structural parts and get rid of big accidents, it becomes important and necessary to find out the early concentration and damage zone, and to make some certain examination of damage and stress status [3]. The method of magnetic memory testing would be effective for the confirming of stress concentration zone in the equipment or structural parts, and could lead the way ahead the matters of fatigue analysis, evaluation of equipment life and technological design. The method can detect the endurance failure of the airplane’s undercarriage shaft, which is composed of ferromagnetic materials, and that provides the experimental basis for the prevention of parts’ fatigue defects.


2011 ◽  
Vol 415-417 ◽  
pp. 2101-2104
Author(s):  
Fang Bai ◽  
Bo Song

Metal magnetic memory technology is a passive magnetic method of non-destructive testing based on the residual magnetic field of a ferromagnetic component. The MMM measurements were performed on a series of X70 pipeline steel samples for various values of uniaxial elastic and plastic deformation from zero up to about 20% strain. The outcomes evidence that the metal magnetic memory gradient index m can be used to evaluate the stress-strain state of ferromagnetic materials under tensile stresses. The tensile stress effect on the gradient index m significantly in elastic stage, but the gradient index m remained unchanged in the plastic deformation stage.


Author(s):  
Guoxi He ◽  
Tengjiao He ◽  
Kexi Liao ◽  
Hongdong Zhu ◽  
Shuai Zhao

Abstract On the basis of the metal-magnetic-memory (MMM) effect, a three-dimensional high-precision non-contact pipeline magnetism-based stress inspection (PMSI) technology is developed for trenchless inspection of buried pipeline defects. This technology is a new non-destructive testing technology, which can find the possible stress concentration area (SCA) along the buried gas transmission pipeline. Hence, we could further judge according to the testing data that the stress concentration is caused by the overpressure which results from whether the pipeline external load at the potential landslide of the soil or serious metal loss such as corrosion defects. The stress inspection method determines the relative risk of defects by directly quantifying the change level of stress, rather than calculating the geometric parameters (length, width, height) of defects. The PMSI was carried out on a 10.3 km LNG pipeline and two level-II SCAs were found. A comprehensive index F was defined to evaluate the severity quantitatively and judge the grade of the defect status as well as the sensitive. Thus, the relative stress and thereby the safety state of the pipeline are judged, and then the precise position of the relatively serious section on the pipeline is determined.


1999 ◽  
Vol 577 ◽  
Author(s):  
A. Gavrin ◽  
C. Sellers ◽  
S.H. Liouw

ABSTRACTWe have used Magnetic Force Microscopy (MFM) to study the magnetic domain structures of melt-spun Nd-Fe-B ribbons. The ribbons are commercial products (Magnequench International, Inc. MQP-B and MQP-B+) with a thickness of approximately 20 microns. These materials have identical composition, Nd12.18B5.36Fe76.99Co5.46, but differ in quenching conditions. In order to study the distribution of domain sizes through the ribbon thickness, we have prepared cross-sectional samples in epoxy mounts. In order to avoid artifacts due to tip-sample interactions, we have used high coercivity CoPt coated MFM tips. Our studies show domain sizes typically ranging from 50-200 nm in diameter. This is in agreement with studies of similar materials in which domains were investigated in the plane of the ribbon. We also find that these products differ substantially in mean domain size and in the uniformity of the domain sizes as measured across the ribbon. While the B+ material shows nearly uniform domain sizes throughout the cross section, the B material shows considerably larger domains on one surface, followed by a region in which the domains are smaller than average. This structure is presumably due to the differing quench conditions. The region of coarse domains varies in thickness, disappearing in some areas, and reaching a maximum thickness of 2.75 µm in others. We also describe bulk magnetic measurements, and suggest that.


Author(s):  
Hidenori Shitamoto ◽  
Nobuyuki Hisamune

There are several methods currently being used to install offshore oil and gas pipelines. The reel-lay process is fast and one of the most effective offshore pipeline installation methods for seamless, ERW, and UOE line pipes with outside diameters of 18 inches or less. In the case of the reel-laying method, line pipes are subjected to plastic deformation multiplication during reel-laying. It is thus important to understand the change of the mechanical properties of line pipes before and after reel-laying. Therefore, full-scale reeling (FSR) simulations and small-scale reeling (SSR) simulations are applied as evaluation tests for reel-laying. In this study, FSR simulations were performed to investigate the effect of cyclic deformation on the mechanical properties of weldable 13Cr seamless line pipes. Furthermore, SSR simulations were performed to compare the results obtained by FSR simulations.


Electronics ◽  
2021 ◽  
Vol 10 (15) ◽  
pp. 1762
Author(s):  
Yuki Gao ◽  
Maryam Ravan ◽  
Reza K. Amineh

The use of non-metallic pipes and composite components that are low-cost, durable, light-weight, and resilient to corrosion is growing rapidly in various industrial sectors such as oil and gas industries in the form of non-metallic composite pipes. While these components are still prone to damages, traditional non-destructive testing (NDT) techniques such as eddy current technique and magnetic flux leakage technique cannot be utilized for inspection of these components. Microwave imaging can fill this gap as a favorable technique to perform inspection of non-metallic pipes. Holographic microwave imaging techniques are fast and robust and have been successfully employed in applications such as airport security screening and underground imaging. Here, we extend the use of holographic microwave imaging to inspection of multiple concentric pipes. To increase the speed of data acquisition, we utilize antenna arrays along the azimuthal direction in a cylindrical setup. A parametric study and demonstration of the performance of the proposed imaging system will be provided.


Sign in / Sign up

Export Citation Format

Share Document