Heat Transfer From a Heated Flat Surface due to Swirling Coaxial Turbulent Jet Impingement

Author(s):  
Farhana Afroz ◽  
Muhammad A.R. Sharif

Abstract Heat transfer from an isothermally hot flat surface due to swirling coaxial turbulent jet impingement is investigated numerically. The coaxial jet construction consists of implanting a thin-walled round tube inside a coaxial outer pipe. Two different fluid streams or jets, having different average velocities, flow through the inner tube, and the annular space between the inner tube and the outer pipe. The ratio of the average velocities of the jets, the ratio of the pipe diameters, the jet exit Reynolds number, the strength of the swirl, and the separation distance from the jet exit to the impingement surface are the main parameters for this flow configuration. The effects of the swirl strength on the jet impingement heat transfer at the target surface are investigated by computing the flow and thermal fields for various combinations of the problem parameters. The presented results contain the plots of the flow streamlines, the contours of the temperature, the contours of the swirl velocity, as well as the distribution of the local and average Nusselt number on the impingement surface. It is found that, compared to the single round jet, the coaxial jet produces enhanced and more uniform heat transfer at the heated surface. The jet-spreading and mixing are affected by the imposed jet swirl which modifies the heat transfer process. Thus, the heat transfer compared to a non-swirling jet is either enhanced or diminished depending on the combination of the problem parameters.

Author(s):  
Muhammad A. R. Sharif

Convective heat transfer from a heated flat surface due to twin oblique laminar slot-jet impingement is investigated numerically. The flow domain is confined by an adiabatic surface parallel to the heated impingement surface. The twin slot jets are located on the confining surface. The flow and geometric parameters are the jet exit Reynolds number, distance between the two jets, distance between the jet exit and the impingement surface, and the inclination angle of the jet to the impingement surface. Numerical computations are done for various combinations of these parameters, and the results are presented in terms of the streamlines and isotherms in the flow domain, the distribution of the local Nusselt number along the heated surface, and the average Nusselt number at the heated surface. It is found that the peak and the average Nusselt number on the hot surface mildly decreases and the location of the stagnation point and the peak Nusselt number gradually moves downstream as the impingement angle is decreased from 90 deg. The heat transfer distribution from the impingement surface gets more uniform as the impingement angle is reduced to 45 deg and 30 deg at lager jet-to-plate distance (4–8) with a corresponding overall heat transfer reduction of about 40% compared to the normal impinging jet case. The specified jet exit velocity profile boundary condition has considerable effect on the predicted Nusselt number around the impingement location. Fully developed jet exit velocity profile correctly predicts the Nusselt number when compared to the experimental data.


Author(s):  
Xing Yang ◽  
Zhao Liu ◽  
Zhenping Feng

Detailed heat transfer distributions are numerically investigated on a multiple jet impingement target surface with staggered arrays of spherical dimples where coolant can be extracted through film holes for external film cooling. The three dimensional Reynolds-averaged Navier-Stokes analysis with SST k-ω turbulence model is conducted at jet Reynolds number from 15,000 to 35,000. The separation distance between the jet plate and the target surface varies from 3 to 5 jet diameters and two jet-induced crossflow schemes are included to be referred as large and small crossflow at one and two opposite exit openings correspondingly. Flow and heat transfer results for the dimpled target plate with three suction ratios of 2.5%, 5.0% and 12.0% are compared with those on dimpled surfaces without film holes. The results indicate the presence of film holes could alter the local heat transfer distributions, especially near the channel outlets where the crossflow level is the highest. The heat transfer enhancements by applying film holes to the dimpled surfaces is improved to different degrees at various suction ratios, and the enhancements depend on the coupling effect of impingement and channel flow, which is relevant to jet Reynolds number, jet-to-plate spacing and crossflow scheme.


Author(s):  
Andrea Osorio ◽  
Justin Hodges ◽  
Husam Zawati ◽  
Erik J. Fernandez ◽  
Jayanta S. Kapat ◽  
...  

Abstract A series of sweeping jet-impingement experiments are conducted over a circular heated surface, with a main objective of understanding the impact of the unique flow field on the resulting heat transfer. The sweeping motion of the fluidic oscillator is influenced by the sweeping frequency and sweeping angle where each is directly dependent on the geometric design (i.e. internal feedback loops, mixing chamber, etc.). The target surface consists of a heated copper disk, where heater power is supplied to the bottom surface of the disk and adjusted until a differential of 30°C is obtained between the jet and target surface temperatures. An energy balance over the target surface temperatures provides a means for calculating area-averaged heat transfer rate, hence Nusselt number. An increase in the sweeping jet’s thermal inertia initiates an augmentation in heat transfer due to sweeping motion of the jet across the target surface. PIV data was acquired for two jet configurations, confined and unconfined, so that the recirculation behavior can be determined. The fluidic oscillator is found to improve only at a low z/d. At large z/d (greater than 4 in this study), the fluidic oscillator adversely affects the heat transfer.


2019 ◽  
Vol 141 (8) ◽  
Author(s):  
Ahmet Ümit Tepe ◽  
Kamil Arslan ◽  
Yaşar Yetişken ◽  
Ünal Uysal

In this study, effects of extended jet holes to heat transfer and flow characteristics of jet impingement cooling were numerically investigated. Cross-flow in the impinging jet cooling adversely affects the heat transfer on the target surface. The main purpose of this study is to reduce the negative effect of cross-flow on heat transfer by extending jet holes toward the target surface with nozzles. This study has been conducted under turbulent flow condition (15,000 ≤ Re  ≤  45,000). The surface of the turbine blade, which is the target surface, has been modeled as a flat plate. The effect of the ribs, placed on the target surface, on the heat transfer has been also investigated, and the results were compared with the flat surface. The parameters such as average and local Nusselt numbers on the target surface, flow characteristics, and compressor power have been examined in detail. It was obtained from the numerical results that the average Nusselt number increases with decreasing the gap between the target surface and the nozzle. In addition, the higher average Nusselt number was obtained on the flat surface than the ribbed surface. The lowest compressor power was achieved in the 5Dj nozzle gap for the flat surface and in the 4Dj nozzle gap for the ribbed surface.


Author(s):  
Li-Jian Cheng ◽  
Wei-Jiang Xu ◽  
Hui-Ren Zhu ◽  
Ru Jiang

An efficient way to improve the efficiency of the aero engine is to increase the temperature of the turbine inlet, which requires more advanced turbine cooling techniques. The dimple heat transfer enhancement is a technique that can enhance the convective heat transfer of the surfaces by processing a certain arrangement of jet holes and dimples on the surfaces. The objective of this paper is to investigate the characteristics of heat transfer and pressure loss for an inline array of round jets impinging on the side of dimpled surface. Meanwhile, the results are compared to those of the impingement directly over the dimples and the flat surface. The investigated parameters are Reynolds number (Re) of 5000, 8000 and 11500, the ratio of jet-to-plate spacing to jet diameter (H/Dj) of 2, 4, 6 and 8, the ratio of dimple depth to dimple diameter (d/Dd) of 0.15, 0.25 and 0.29. Results show that increasing the Reynolds number can improve the heat transfer. The shallower dimples enhance higher heat transfer than the deeper ones. For the target surface, the side impingement conducts the highest improvement at H/Dj = 8, d/Dd = 0.15 and Re = 11500. The improvement is about 16% higher than that of the frontal impingement while this value is 7% when compared to the flat surface. However, for the jet surface at the same operating condition, the side impingement leads to the worst heat transfer performance by 25% and 15% lower than that of the frontal impingement and the flat surface, respectively. The higher Reynolds number causes higher total pressure loss. But the pressure loss coefficient of the side impingement is not significantly different from that of the frontal impingement and the flat surface.


2015 ◽  
Vol 766-767 ◽  
pp. 1148-1152
Author(s):  
M. Karthigairajan ◽  
S. Mohanamurugan ◽  
K. Umanath

An experiment sturdy has been carried out for jet impingement cooling on the spherically convex surface is the development of mechanism. The effect of curvature, Space between jet exit and target surface, and Reynolds number on heat transfer is investigated for around air jet on hemispherical surface. The flow at the jet exit has fully developed velocity profile. A uniform heat flux boundary is created on the heated surface. The experiments are performed for 5000<Re<25000, 2<L/d<10, and jet diameters ranging from 1.3, 2.1, 3.4, 4.0 and 5.2 cm. In the mean time effect of curvature on local heat transfer is negligible at the wall jet region corresponding to r/d>0.5. From the experimental results the variation of the D/d ratio with local Nusselt number (Nust) for various Reynolds numbers and various L/d ratios are plotted. The results show that Nust increase with increase in curvature and the effect of the curvature will high at high Reynolds number. i.e. Nust at Re=25000 is 25% higher than at Re= 5000 This may be attributed to an increase in curvature increases acceleration, & size of three dimensional counter rotating vortices at stagnation point and the increment of Reynolds number increases the jet momentum, and also enhances the vortices creation. Nust is peaking in the L/d ratio of 6 because of high turbulence intensity as this distance.


In this paper reports the results of investigation of heat transfer performance of in compression air jet impinging of heated surface over a flat plate & pin-fin heat sink. To mimic the computer processor of flat plate and pin fin dimensions are 120mm*75mm and pin height is 5cm and fin radius is 1cm and L/d ratios are 5,10,15respectively. By using this simulation in Ansys fluent software to perform the turbulent jet impingement on a surface. The bottom surface of the plate is supply constant heat flux and top surface of the plate is cooled by an impingement jet of air. It has two equations are used k-w model and shear stress transport to handle the turbulent jet. The result of flat plate heat sink is compare the Experimental and simulation is higher at 0.89% of experimental to compare numerical and Nusselt is higher at 3.35% of numerical to compare the experimental and heat transfer coefficient is higher at 4.51% of numerical to compare the Experimental and result of pin fin heat sink is compare the Experimental and numerical is higher at 0.23% of experimental to compare the numerical and Nusselt number is higher at 0.71% of numerical to compare the experimental and heat transfer coefficient is higher at 0.88% of numerical to compare the experimental. The effect of L/d ratios of jet impingement over a flat plate and pin fin heat sink on the heat transfer performance of the heated surface of investigated.


1993 ◽  
Vol 115 (3) ◽  
pp. 292-297 ◽  
Author(s):  
S. Gavali ◽  
K. Karki ◽  
S. Patankar ◽  
K. Miura

A numerical study is presented for an axisymmetric laminar jet impingement on a confined disk, with the spent fluid being collected through an annual channel that is concentric with the nozzle. In this study, parametric variations were made of the dimensionless separation distance between the nozzle exit and the impingement surface, of the ratio of the diameter of the impingement surface to the nozzle diameter, and of the Reynolds number. The flow field is characterized by two recirculation zones, one adjacent to the nozzle exit and the other near the confining wall. The local heat transfer distribution on the impingement surface exhibits an off-axis maximum and a local minimum near the confining wall. The nozzle separation distance has an effect on surface heat transfer only for configurations with closet confinement. The thermal boundary condition on the impingement surface is found to have little effect on the total heat transfer.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1784
Author(s):  
Jiangyu Hu ◽  
Ning Wang ◽  
Jin Zhou ◽  
Yu Pan

Thermal protection is still one of the key challenges for successful scramjet operations. In this study, the three-dimensional coupled heat transfer between high-temperature gas and regenerative cooling panel with kerosene of supercritical pressure flowing in the cooling channels was numerically investigated to reveal the fundamental characteristics of regenerative cooling as well as its influencing factors. The SST k-ω turbulence model with low-Reynolds-number correction provided by the pressure-based solver of Fluent 19.2 is adopted for simulation. It was found that the heat flux of the gas heated surface is in the order of 106 W/m2, and it declines along the flow direction of gas due to the development of boundary layer. Compared with cocurrent flow, the temperature peak of the gas heated surface in counter flow is much higher. The temperature and heat flux of the gas heated surface both rises with the static pressure and total temperature of gas. The heat flux of the gas heated surface increases with the mass flow rate of kerosene, and it hardly changes with the pressure of kerosene. Results herein could help to understand the real heat transfer process of regenerative cooling and guide the design of thermal protection systems.


Sign in / Sign up

Export Citation Format

Share Document