Impact of Sweeping Jet on Area-Averaged Impingement Heat Transfer

Author(s):  
Andrea Osorio ◽  
Justin Hodges ◽  
Husam Zawati ◽  
Erik J. Fernandez ◽  
Jayanta S. Kapat ◽  
...  

Abstract A series of sweeping jet-impingement experiments are conducted over a circular heated surface, with a main objective of understanding the impact of the unique flow field on the resulting heat transfer. The sweeping motion of the fluidic oscillator is influenced by the sweeping frequency and sweeping angle where each is directly dependent on the geometric design (i.e. internal feedback loops, mixing chamber, etc.). The target surface consists of a heated copper disk, where heater power is supplied to the bottom surface of the disk and adjusted until a differential of 30°C is obtained between the jet and target surface temperatures. An energy balance over the target surface temperatures provides a means for calculating area-averaged heat transfer rate, hence Nusselt number. An increase in the sweeping jet’s thermal inertia initiates an augmentation in heat transfer due to sweeping motion of the jet across the target surface. PIV data was acquired for two jet configurations, confined and unconfined, so that the recirculation behavior can be determined. The fluidic oscillator is found to improve only at a low z/d. At large z/d (greater than 4 in this study), the fluidic oscillator adversely affects the heat transfer.

Author(s):  
Farhana Afroz ◽  
Muhammad A.R. Sharif

Abstract Heat transfer from an isothermally hot flat surface due to swirling coaxial turbulent jet impingement is investigated numerically. The coaxial jet construction consists of implanting a thin-walled round tube inside a coaxial outer pipe. Two different fluid streams or jets, having different average velocities, flow through the inner tube, and the annular space between the inner tube and the outer pipe. The ratio of the average velocities of the jets, the ratio of the pipe diameters, the jet exit Reynolds number, the strength of the swirl, and the separation distance from the jet exit to the impingement surface are the main parameters for this flow configuration. The effects of the swirl strength on the jet impingement heat transfer at the target surface are investigated by computing the flow and thermal fields for various combinations of the problem parameters. The presented results contain the plots of the flow streamlines, the contours of the temperature, the contours of the swirl velocity, as well as the distribution of the local and average Nusselt number on the impingement surface. It is found that, compared to the single round jet, the coaxial jet produces enhanced and more uniform heat transfer at the heated surface. The jet-spreading and mixing are affected by the imposed jet swirl which modifies the heat transfer process. Thus, the heat transfer compared to a non-swirling jet is either enhanced or diminished depending on the combination of the problem parameters.


2015 ◽  
Vol 766-767 ◽  
pp. 1148-1152
Author(s):  
M. Karthigairajan ◽  
S. Mohanamurugan ◽  
K. Umanath

An experiment sturdy has been carried out for jet impingement cooling on the spherically convex surface is the development of mechanism. The effect of curvature, Space between jet exit and target surface, and Reynolds number on heat transfer is investigated for around air jet on hemispherical surface. The flow at the jet exit has fully developed velocity profile. A uniform heat flux boundary is created on the heated surface. The experiments are performed for 5000<Re<25000, 2<L/d<10, and jet diameters ranging from 1.3, 2.1, 3.4, 4.0 and 5.2 cm. In the mean time effect of curvature on local heat transfer is negligible at the wall jet region corresponding to r/d>0.5. From the experimental results the variation of the D/d ratio with local Nusselt number (Nust) for various Reynolds numbers and various L/d ratios are plotted. The results show that Nust increase with increase in curvature and the effect of the curvature will high at high Reynolds number. i.e. Nust at Re=25000 is 25% higher than at Re= 5000 This may be attributed to an increase in curvature increases acceleration, & size of three dimensional counter rotating vortices at stagnation point and the increment of Reynolds number increases the jet momentum, and also enhances the vortices creation. Nust is peaking in the L/d ratio of 6 because of high turbulence intensity as this distance.


Author(s):  
Eelco Gehring ◽  
Mario F. Trujillo

A primary mechanism of heat transfer in spray cooling is the impingement of numerous droplets onto a heated surface. This mechanism is isolated in the present and ongoing work by numerically simulating the impact of a single train of FC-72 droplets employing an implicit free surface capturing methodology. The droplet frequency and velocity ranges from 2000–4000 Hz, and 0.5–2 m/s, respectively, with a fixed drop size of 239 μm. This gives a corresponding Weber and Reynolds range of 10–170 and 330–1300, respectively. Results show that the impingement zone is largely free of phase change effects due to the efficient suppression of the local temperature field well below the saturated value. Due in part to the relatively high value of the Prandtl number and the compression of the boundary layer from the impingement flow, a cell size on the order of 1 μm is necessary to adequately capture the heat transfer dynamics. It is shown that the cooling behavior increases in relation to increasing frequency and impact velocity, but is most sensitive to velocity. In fact, for sufficiently low velocities the calculations show that the momentum imparted on the film is insufficient to maintain a near stationary liquid crown. The consequence is a noticeable penalty on the cooling behavior.


Author(s):  
Fatih Selimefendigil ◽  
Hakan F. Oztop

Abstract Nanoliquid impingement heat transfer with phase change material (PCM) installed radial system is considered. Study is performed by using finite element method for various values of Reynolds numbers (100 ≤ Re ≤ 300), height of PCM (0.25H ≤ hpcm = 0.7H ≤ 0.75H) and plate spacing (0.15H ≤ hpcm = 0.7H ≤ 0.40H). Different configurations with using water, nanoliquid and nanoliquid+PCM are compared in terms of heat transfer improvement. Thermal performance is improved by using PCM while best performance is achieved with nanoliquid and PCM installed configuration. At Re=100 and Re=300, heat transfer improvements of 26% and 25.5% are achieved with nanoliquid+PCM system as compared to water without PCM. Height of the PCM layer also influences the heat transfer dynamic behavior while there is 12.6% variation in the spatial average heat transfer of the target surface with the lowest and highest PCM height while discharging time increases by about 76.5%. As the spacing between the plates decreases, average heat transfer rises and there is 38% variation.


Author(s):  
Karthik Krishna ◽  
Mark Ricklick

Ceramic Matrix Composite is a woven material characterized by a significant level of surface waviness of 35–60μm and surface roughness of 5–6μm. To be implemented in a future gas turbine engine they will be cooled traditionally to increase power and efficiency. To analyze the CMC surface effects on heat transfer rate, an impinging circular jet on a simulated CMC surface is studied experimentally and the CMC surface is represented by a high resolution CNC machined surface. The test parameters are jet to plate distance of 7 jet diameters, oblique impingement angles of 45° and 90° and Reynolds numbers of 11,000 to 35,000. The test surface is broken down into constant temperature segments, and individual segment Nusselt number is determined and plotted for the various impingement cases studied. Area-Averaged results show negligible changes in average Nusselt number as compared to the hydrodynamically smooth surface. The impact of the CMC surface feature is negligible compared to the uncertainty in heat transfer coefficient, and therefore traditional design tools can be utilized.


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5856
Author(s):  
Jianfei Tong ◽  
Lingbo Zhu ◽  
Yiping Lu ◽  
Tianjiao Liang ◽  
Youlian Lu ◽  
...  

Pipe height in cylindrical neutron moderator is an important factor to flow pattern, temperature distribution and even the neutron characters. In this paper, the steady-state thermal analysis of cold neutron moderator is carrying out with different heights, conjugated heat transfer method and one-way coupled with a neutron transfer software. The different pipe heights, which is the jet-to-surface distances (H/D = 0.5~6), were compared using a 2D moderator model. The results show that vortex size and velocity gradient from container wall to vortex center vary with H/D, the center of recirculation zone nearly remain constant, and heat transfer effect is weakened on the target bottom surface. With H/D increasing, the velocity at bottom target surface is progressively decreased, and cooling effect is poor, leading to the rise in temperature. The optimal range cooling performance is (H/D) = 0.5~1 at Re = 1.7 × 105, and the enhancement of beam power further strengthens the thermal deposition difference between container and liquid hydrogen. The results can be applied to moderator component design and optimization in the future spallation neutron source.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6458
Author(s):  
Liaqat Hussain ◽  
Muhammad Mahabat Khan ◽  
Manzar Masud ◽  
Fawad Ahmed ◽  
Zabdur Rehman ◽  
...  

Jet impingement is considered to be an effective technique to enhance the heat transfer rate, and it finds many applications in the scientific and industrial horizons. The objective of this paper is to summarize heat transfer enhancement through different jet impingement methods and provide a platform for identifying the scope for future work. This study reviews various experimental and numerical studies of jet impingement methods for thermal-hydraulic improvement of heat transfer surfaces. The jet impingement methods considered in the present work include shapes of the target surface, the jet/nozzle–target surface distance, extended jet holes, nanofluids, and the use of phase change materials (PCMs). The present work also includes both single-jet and multiple-jet impingement studies for different industrial applications.


Author(s):  
Qiang Li ◽  
Yimin Xuan ◽  
Feng Yu ◽  
Junjie Tan

An experimental investigation was performed to study the heat transfer and flow features of Cu-water nanofluids (Cu particles with 26 nm diameter) in a submerged jet impingement cooling system. Three particular nozzle-to-heated surface distances (2, 4 and 6 mm) and four particle volume fractions (1.5%, 2.0%, 2.5% and 3.0%) are involved in the experiment. The experimental results reveal that the suspended nanoparticles increase the heat transfer performance of the base liquid in the jet impingement cooling system. Within the range of experimental parameters considered, it has been found that highest surface heat transfer coefficients can be achieved using a nozzle-to-surface distance of 4 mm and the nanofluid with 3.0% particle volume fraction. In addition, the experiments show that the system pressure drop of the dilute nanofluids is almost equal to that of water under the same entrance velocity.


Author(s):  
Xing Yang ◽  
Zhao Liu ◽  
Zhenping Feng

Detailed heat transfer distributions are numerically investigated on a multiple jet impingement target surface with staggered arrays of spherical dimples where coolant can be extracted through film holes for external film cooling. The three dimensional Reynolds-averaged Navier-Stokes analysis with SST k-ω turbulence model is conducted at jet Reynolds number from 15,000 to 35,000. The separation distance between the jet plate and the target surface varies from 3 to 5 jet diameters and two jet-induced crossflow schemes are included to be referred as large and small crossflow at one and two opposite exit openings correspondingly. Flow and heat transfer results for the dimpled target plate with three suction ratios of 2.5%, 5.0% and 12.0% are compared with those on dimpled surfaces without film holes. The results indicate the presence of film holes could alter the local heat transfer distributions, especially near the channel outlets where the crossflow level is the highest. The heat transfer enhancements by applying film holes to the dimpled surfaces is improved to different degrees at various suction ratios, and the enhancements depend on the coupling effect of impingement and channel flow, which is relevant to jet Reynolds number, jet-to-plate spacing and crossflow scheme.


Sign in / Sign up

Export Citation Format

Share Document