A Six Parameter Single Diode Model for Photovoltaic Modules

2020 ◽  
Vol 143 (1) ◽  
Author(s):  
Mete Nacar ◽  
Emre Özer ◽  
Aysel Ersoy Yılmaz

Abstract The modeling of photovoltaic (PV) systems is substantial for the estimation of energy production and efficiency analysis in the PV systems under the changing environmental conditions. A PV model mathematically expresses the electrical characteristic of the PV modules according to temperature and irradiance. The most popular electrical circuit models are the single-diode model (SDM) and the double-diode model (DDM). Considering accuracy and complexity, SDM was used in this paper. In the equivalent circuit model used to estimate the electrical behavior of the PV modules, the parameter estimating has become an optimization problem. In recent studies, it is seen that metaheuristic algorithms are often employed in solving this optimization problem. In this paper, a new six-parameter PV model is proposed to improve the accuracy of the five-parameter SDM, taking into account the temperature dependence of the series resistance. Particle swarm optimization (PSO) and a couple of metaheuristic algorithms have been executed to estimate six unknown parameters of the proposed model under standard test conditions (STC: 25 °C, 1000 W/m2, AM1.5) using current–voltage (I–V) data of PV module. In order to evaluate the performance of the proposed method under the changing environmental conditions, it was compared with the three methods commonly used in the literature. Accuracy of the proposed model has been indicated by the root mean square error (RMSE) within the range of current data and the model current values. Simulation results demonstrate that the proposed model can predict the I–V curve for the PV modules with high accuracy.

2018 ◽  
Vol 15 (1) ◽  
pp. 70-81 ◽  
Author(s):  
Alivarani Mohapatra ◽  
Byamakesh Nayak ◽  
Kanungo Barada Mohanty

Purpose This paper aims to propose a simple, derivative-free novel method named as Nelder–Mead optimization algorithm to estimate the unknown parameters of the photovoltaic (PV) module considering the environmental conditions. Design/methodology/approach At a particular temperature and irradiation, experimental current-voltage (I-V) and power-voltage (P-V) characteristics are drawn and considered as a reference model. The PV system model with unknown model parameters is considered as the adaptive model whose unknown model parameters are to be adapted so that the simulated characteristics closely matches with the experimental characteristics. A single diode (Rsh) model with five unknown model parameters is considered here for the parameter estimation. Findings The key advantages of this method are that parameters are estimated considering environmental conditions. Experimental characteristics are considered for parameter estimation which gives accurate results. Parameters are estimated considering both I-V and P-V curves as most of the applications demand extraction of the actual power from the PV module. Originality/value The proposed model is compared with other three well-known models available in the literature considering various statistical errors. The results show the superiority of the proposed model with a minimum error for both I-V and P-V characteristics.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1867
Author(s):  
Mohamed Abdel-Basset ◽  
Reda Mohamed ◽  
Ripon K. Chakrabortty ◽  
Michael J. Ryan ◽  
Attia El-Fergany

The optimization of photovoltaic (PV) systems relies on the development of an accurate model of the parameter values for the solar/PV generating units. This work proposes a modified artificial jellyfish search optimizer (MJSO) with a novel premature convergence strategy (PCS) to define effectively the unknown parameters of PV systems. The PCS works on preserving the diversity among the members of the population while accelerating the convergence toward the best solution based on two motions: (i) moving the current solution between two particles selected randomly from the population, and (ii) searching for better solutions between the best-so-far one and a random one from the population. To confirm its efficacy, the proposed method is validated on three different PV technologies and is being compared with some of the latest competitive computational frameworks. The numerical simulations and results confirm the dominance of the proposed algorithm in terms of the accuracy of the final results and convergence rate. In addition, to assess the performance of the proposed approach under different operation conditions for the solar cells, two additional PV modules (multi-crystalline and thin-film) are investigated, and the demonstrated scenarios highlight the utility of the proposed MJSO-based methodology.


2012 ◽  
Vol 135 (2) ◽  
Author(s):  
A. Charki ◽  
R. Laronde ◽  
D. Bigaud

This article presents a method developed for carrying out the energy production estimation considering the energy losses in different components of a photovoltaic (PV) system and its downtime effect. The studied system is a grid-connected photovoltaic system including PV modules, wires, and inverter. PV systems are sensitive to environmental conditions (UV radiation, temperature, humidity) and all components are subjected to electrical losses. The proposed method allows obtaining the production of photovoltaic system and its availability during a specified period using meteorological data. The calculation of the production takes into account the downtime periods when no energy is delivered in the grid during this period. The time-to-failure and the time-to-repair of photovoltaic system are considered following a Weibull distribution. This method permits to have a best estimation of the production throughout the lifetime of the photovoltaic system.


SIMULATION ◽  
2018 ◽  
Vol 94 (10) ◽  
pp. 861-872 ◽  
Author(s):  
Mohamed Saleem Abdul Kareem ◽  
Manimaran Saravanan

In this paper, an improved mathematical model of a single-diode photovoltaic (PV) module has been developed to predict the maximum power of the PV modules produced by different PV technologies, such as mono crystalline, multi crystalline, and thin film, under varying environmental conditions. The current–voltage characteristic equation of the PV module is used to extract the PV module’s unknown parameters, such as light generated current, saturation current, ideality factor, series resistance, and shunt resistance at standard test condition (STC). In the proposed PV model, numerical methods are used to calculate the parameters of the PV module at STC, by introducing new equations to estimate the value of series resistance and shunt resistance. By introducing new equations IMPP and VMPP, the maximum power of different PV modules manufactured by various PV technologies at different environmental conditions is then found. In the proposed PV model, the percentage relative error obtained at maximum power is calculated and the experimental results are compared with the models that exist in the literature for different PV modules. The maximum power obtained by the proposed PV model is much closer to that obtained by the Sandia model and Ishaque two-diode model. Furthermore, the output performance of the developed PV model has close agreement with the experimentally obtained data and it is verified practically.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2308
Author(s):  
Kamran Ali Khan Niazi ◽  
Yongheng Yang ◽  
Tamas Kerekes ◽  
Dezso Sera

Partial shading affects the energy harvested from photovoltaic (PV) modules, leading to a mismatch in PV systems and causing energy losses. For this purpose, differential power processing (DPP) converters are the emerging power electronic-based topologies used to address the mismatch issues. Normally, PV modules are connected in series and DPP converters are used to extract the power from these PV modules by only processing the fraction of power called mismatched power. In this work, a switched-capacitor-inductor (SCL)-based DPP converter is presented, which mitigates the non-ideal conditions in solar PV systems. A proposed SCL-based DPP technique utilizes a simple control strategy to extract the maximum power from the partially shaded PV modules by only processing a fraction of the power. Furthermore, an operational principle and loss analysis for the proposed converter is presented. The proposed topology is examined and compared with the traditional bypass diode technique through simulations and experimental tests. The efficiency of the proposed DPP is validated by the experiment and simulation. The results demonstrate the performance in terms of higher energy yield without bypassing the low-producing PV module by using a simple control. The results indicate that achieved efficiency is higher than 98% under severe mismatch (higher than 50%).


2020 ◽  
Vol 70 (4) ◽  
pp. 953-978
Author(s):  
Mustafa Ç. Korkmaz ◽  
G. G. Hamedani

AbstractThis paper proposes a new extended Lindley distribution, which has a more flexible density and hazard rate shapes than the Lindley and Power Lindley distributions, based on the mixture distribution structure in order to model with new distribution characteristics real data phenomena. Its some distributional properties such as the shapes, moments, quantile function, Bonferonni and Lorenz curves, mean deviations and order statistics have been obtained. Characterizations based on two truncated moments, conditional expectation as well as in terms of the hazard function are presented. Different estimation procedures have been employed to estimate the unknown parameters and their performances are compared via Monte Carlo simulations. The flexibility and importance of the proposed model are illustrated by two real data sets.


2017 ◽  
Vol 2017 ◽  
pp. 1-19 ◽  
Author(s):  
Vandana Jha ◽  
Uday Shankar Triar

This paper proposes an improved generalized method for evaluation of parameters, modeling, and simulation of photovoltaic modules. A new concept “Level of Improvement” has been proposed for evaluating unknown parameters of the nonlinear I-V equation of the single-diode model of PV module at any environmental condition, taking the manufacturer-specified data at Standard Test Conditions as inputs. The main contribution of the new concept is the improvement in the accuracy of values of evaluated parameters up to various levels and is based on mathematical equations of PV modules. The proposed evaluating method is implemented by MATLAB programming and, for demonstration, by using the values of parameters of the I-V equation obtained from programming results, a PV module model is build with MATLAB. The parameters evaluated by the proposed technique are validated with the datasheet values of six different commercially available PV modules (thin film, monocrystalline, and polycrystalline) at Standard Test Conditions and Nominal Operating Cell Temperature Conditions. The module output characteristics generated by the proposed method are validated with experimental data of FS-270 PV module. The effects of variation of ideality factor and resistances on output characteristics are also studied. The superiority of the proposed technique is proved.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Huibing Hao ◽  
Chun Su

A novel reliability assessment method for degradation product with two dependent performance characteristics (PCs) is proposed, which is different from existing work that only utilized one dimensional degradation data. In this model, the dependence of two PCs is described by the Frank copula function, and each PC is governed by a random effected nonlinear diffusion process where random effects capture the unit to unit differences. Considering that the model is so complicated and analytically intractable, Markov Chain Monte Carlo (MCMC) method is used to estimate the unknown parameters. A numerical example about LED lamp is given to demonstrate the usefulness and validity of the proposed model and method. Numerical results show that the random effected nonlinear diffusion model is very useful by checking the goodness of fit of the real data, and ignoring the dependence between PCs may result in different reliability conclusion.


2021 ◽  
pp. 136943322110509
Author(s):  
Zhiguo Shi ◽  
Cheng Ning Loong ◽  
Jiazeng Shan

This study proposes an equivalent circuit model to simulate the mechanical behavior and frequency-dependent characteristic of eddy current (EC) damping, with the validations from multi-physics finite element (FE) modeling and dynamic testing. The equivalent circuit model is first presented with a theoretical expression of the EC damping force. Then, the transient analysis with an ANSYS-based FE model of an EC damper is performed. The time-history forces from the FE model are compared with that from the proposed equivalent circuit model. The favorable agreement indicates that the proposed model can simulate the nonlinear behavior of EC damping under different excitation scenarios. A noncontact and friction-free planar EC damper is designed, and its dynamic behavior is measured by employing shake table testing. The experimental observations can be reproduced by the proposed equivalent circuit model with reasonable accuracy and reliability. The proposed equivalent circuit model is compared with the classical viscous model and the higher-order fractional model using a complex EC damper simulated in ANSYS to show the advantages of the proposed model regarding model simplicity and prediction accuracy. A single-degree-of-freedom (SDOF) structure with different EC damping models is further analyzed to illustrate the need for accurate EC damping modeling.


2014 ◽  
Vol 60 (4) ◽  
pp. 315-320 ◽  
Author(s):  
Gustaw Mazurek

Abstract Estimation of Global Tilted Irradiation (GTI) is a key to performance assessment of typical solar systems since they usually employ tilted photovoltaic (PV) modules or collectors. Numerous solar radiation databases can deliver irradiation values both on horizontal and tilted plane, however they are validated mostly with horizontal-plane ground measurements. In this paper we have compared GTI estimates retrieved from five Internet databases with results of measurements at two PV systems located in Poland. Our work shows that in spite of good agreement in annual scale, there is a tendency to underestimate GTI in summer and overestimate in winter, when PV modules can receive less than a half of expected irradiation. The latter issue affects sizing of PV system components and implies a correction needed to achieve all-year long operation.


Sign in / Sign up

Export Citation Format

Share Document