scholarly journals Estimation of Solar Irradiation on Inclined Surface Based on Web Databases

2014 ◽  
Vol 60 (4) ◽  
pp. 315-320 ◽  
Author(s):  
Gustaw Mazurek

Abstract Estimation of Global Tilted Irradiation (GTI) is a key to performance assessment of typical solar systems since they usually employ tilted photovoltaic (PV) modules or collectors. Numerous solar radiation databases can deliver irradiation values both on horizontal and tilted plane, however they are validated mostly with horizontal-plane ground measurements. In this paper we have compared GTI estimates retrieved from five Internet databases with results of measurements at two PV systems located in Poland. Our work shows that in spite of good agreement in annual scale, there is a tendency to underestimate GTI in summer and overestimate in winter, when PV modules can receive less than a half of expected irradiation. The latter issue affects sizing of PV system components and implies a correction needed to achieve all-year long operation.

2013 ◽  
Vol 479-480 ◽  
pp. 590-594
Author(s):  
Wei Lin Hsieh ◽  
Chia Hung Lin ◽  
Chao Shun Chen ◽  
Cheng Ting Hsu ◽  
Chin Ying Ho ◽  
...  

The penetration level of a PV system is often limited due to the violation of voltage variation introduced by the large intermittent power generation. This paper discusses the use of an active power curtailment strategy to reduce PV power injection during peak solar irradiation to prevent voltage violation so that the PV penetration level of a distribution feeder can be increased to fully utilize solar energy. When using the proposed voltage control scheme for limiting PV power injection into the study distribution feeder during high solar irradiation periods, the total power generation and total energy delivered by the PV system over a 1-year period are determined according to the annual duration of solar irradiation. With the proposed voltage control to perform the partial generation rejection of PV systems, the optimal installation capacity of PV systems can be determined by maximizing the net present value of the system so that better cost effectiveness of the PV project and better utilization of solar energy can be obtained.


In the present scenario photovoltaic (PV) systems feature resonant interest in the recent researches. The amount from the PV frame is highly oscillated due to temperature variation. In this proposed work, the ANN based MPPT algorithm extracts maximum energy from the PV system by benefit of high gain DC-DC Luo converter, the Luo converter produced voltage is given to the single phase grid through reduced switch seven level inverter. The proposed seven level inverter is controlled by high frequency technique multicarrier modulation technique. The PI controller based closed loop grid synchronization is implemented for solving the power quality issues. The multilevel inverter reduce the total harmonics distortion in the output AC voltage waveform. The developed work is carried out using Matlab software-based simulation with various solar irradiation and degree. Keywords: Artificial Neural Network


Author(s):  
Joseph M. Prusa ◽  
John D. Morris ◽  
John D. Morris

The performance of a network of five recently installed, grid interactive residential solar photovoltaic (PV) systems in Palm Beach County, FL is analyzed, and a probabilistic model for estimating the performance the network is developed. To first order, integrated network performance — whatever the combination of individual PV arrays — can be estimated using generalized tilt factors. These take into account basic geometrical information such as array size/orientation and solar position; as well as atmospheric effects, and module efficiencies. They are computed using a model termed the solar simulator that integrates the instantaneous solar irradiation striking a given PV system over a day. The resulting estimates for mean network performance are within ∼ 6% of the observed values. At present, work on estimators of higher moments of the energy production distribution is incomplete, but local meteorological factors that may influence their values as well as data (Pearson correlations and distribution skewness) useful for future developments are discussed.


Author(s):  
Mahmoud Ismail

Performance ratio is one of the indicators used to describe the effectiveness of the PV systems. The sustainability of the PV system year after year as well as its reliability can be checked by measuring the performance ratio each year. This indicator will also enable us to carry out a comparison between the performances of different PV systems. In this paper, the performance ratios for five PV systems installed on the roof tops of some of PTUK university buildings have been calculated on monthly and yearly basis. The analysis has been carried out using the available data (energy production and solar irradiation) for the year 2019. It was found that the performance ratio has higher values for May and September in comparison with other months. On the other hand, its lowest values were obtained in winter months. This trend can be observed for all of the PV clusters on the five buildings.  When taking into account the overall system, the highest value for the performance ratio was 0.89, which was for September, whereas its lowest value of 0.70 was obtained in January. The performance ratio, which was calculated on yearly basis for the overall system, was found to be 0.80. When considering each building separately, the lowest value was 0.44 for the “Services” building whereas the highest value was 0.94 for the Science building.


Author(s):  
Kevin Lynn ◽  
Jennifer Szaro ◽  
William Wilson ◽  
Michael Healey

In January of 2003, the Florida Department of Environmental Protection/Florida Energy Office (DEP/FEO) allocated $600,000 in hardware funds toward the installation of photovoltaic (PV) solar systems on Florida schools. As a result of this program, grid-connected PV systems less than six kilowatts in size were installed on 29 schools in the State of Florida. The Florida Solar Energy Center (FSEC) has monitored these systems for approximately one year of operation. The performance of 28 of these systems was analyzed using standard performance parameters such as the performance ratio, PV array efficiency, inverter efficiency, and PV system efficiency. In addition, a life-cycle cost analysis was conducted using new cost data values and updated market assumptions. These data will serve as a benchmark to compare against future systems with respect to performance vs. installed system cost.


2012 ◽  
Vol 197 ◽  
pp. 768-777 ◽  
Author(s):  
Roberto Candela ◽  
Eleonora Riva Sanseverino ◽  
Pietro Romano ◽  
Marzia Cardinale ◽  
Domenico Musso

This paper presents a strategy for the maximization of the output power of photovoltaic (PV) systems under non homogeneous solar irradiation by means of automatic reconfiguration of the PV arrays layout. The innovation of the proposed approach is the employment of a simple Dynamic Electrical Scheme (DES), allowing a large number of possible modules interconnection, to be installed between the PV generator and the inverter. The models of the PV generator and of the DES have been realized and simulated with Simulink (Dynamic System Simulation for MATLAB). The attained experimental results appear to be quite interesting in terms of the attainable benefit in power and thus energy terms. The limited calculation times of the reconfiguration algorithm allows the application of the DES for the real time adaptation of the configuration to the changing weather conditions or other causes of non-uniform solar irradiation. Moreover, the results confirm that, in case of non uniform solar irradiation, this approach allows to attain considerably much better results than those attainable with a static configuration.


Author(s):  
Jae-Hoon Cho ◽  
◽  
Jin-Il Park ◽  
Won-Pyo Hong ◽  
Myung-Geun Chun ◽  
...  

This paper presents a variable step size incrementalconductance direct Maximum Power Point Tracking (MPPT) method using fuzzy membership for a standalone photovoltaic (PV) system under rapidly changing irradiation. MPPT techniques have been widely applied in PV systems to make a PV array generate maximum power, which depends on solar irradiation. In most applications of MPPT technologies, MPPT algorithm design methods are performed and tested under slowly changing atmospheric conditions such as irradiation and temperature. The short-term effect under rapidly changing irradiation should be considered, however, to improve the dynamic performance of PV system. Our proposed MPPT method is based on an incremental conductance algorithm with a direct control scheme that can directly adjust the duty cycle for the PI controller. A fuzzy membership function is adopted to determine the variable step size according to rapidly changing irradiation. The proposed methods thus has not only faster dynamic performance but also high tracking accuracy. In order to show the effect of the proposed method, the simulation model and proposed MPPT is designed with MATLAB/Simpower and simulated with MATLAB/Stateflow.


2019 ◽  
Vol 25 ◽  
pp. 1-19
Author(s):  
Sindri Þrastarson ◽  
Björn Marteinsson ◽  
Hrund Ólöf Andradóttir

The efficiency and production costs of solar panels have improved dramatically in the past decades. The Nordic countries have taken steps in instigating photovoltaic (PV) systems into energy production despite limited incoming solar radiation in winter. IKEA installed the first major PV system in Iceland with 65 solar panels with 17.55 kW of production capacity in the summer of 2018. The purpose of this research was to assess the feasibility of PV systems in Reykjavík based on solar irradiation measurements, energy production of a PV array located at IKEA and theory. Results suggests that net irradiation in Reykjavík (64°N, 21° V) was on average about 780 kWh/m2 per year (based on years 2008-2018), highest 140 kWh/m2 in July and lowest 1,8 kWh/m2 in December. Maximum annual solar power is generated by solar panels installed at a 40° fixed angle. PV panels at a lower angle produce more energy during summer. Conversely, higher angles maximize production in the winter. The PV system produced over 12 MWh over a one-year period and annual specific yield was 712 kWh/kW and performance ratio 69% which is about 10% lower than in similar studies in cold climates. That difference can be explained by snow cover, shadow falling on the panels and panels not being fixed at optimal slope. Payback time for the IKEA PV system was calculated 24 years which considers low electricity prices in Reykjavik and unforeseen high installation costs. Solar energy could be a feasible option in the future if production- and installation costs were to decrease and if the solar PV output could be sold to the electric grid in Iceland.


2022 ◽  
Vol 12 (2) ◽  
pp. 643
Author(s):  
Abhinandan Routray ◽  
Sung-Ho Hur

This paper proposes an optimized predictive control strategy to mitigate the potential leakage current of grid-tied photovoltaic (PV) systems to improve the lifespans of PV modules. In this work, the PV system is controlled with an optimized predictive control algorithm that selects the switching voltage vectors intelligently to reduce the number of computational burdens. Thus, it improves the dynamic performance of the overall system. This is achieved through a specific cost function that minimizes the change in common-mode voltage generated by the parasitic capacitance of PV modules. The proposed controller does not require any additional modulation schemes. Normalization techniques and weighting factors are incorporated to obtain improved results. The steady state and dynamic performance of the proposed control scheme is validated in this work through simulations and a 600 W experimental laboratory prototype.


2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
A. Al Tarabsheh ◽  
I. Etier ◽  
A. Nimrat

This paper analyzes the energy yield of photovoltaic (PV) modules mounted on fixed tilt, one-axis, and two-axis tracking system towards maximizing the annual energy production. The performance evaluation of the proposed design of the tracking systems is carried via simulating the global radiation averages using METEONORM software and depicting the simulation results in figures using MATLAB software. The one-axis system is simulated by either fixing the azimuth angle while optimizing the inclination angles or fixing the inclination angle while optimizing the azimuth angles; simulation results show an increase in energy yield of 5.87% and 20.12% compared to that of fixed tilt system, respectively. In the two-axis system, optimization of both azimuth and inclination angles is carried out simultaneously which resulted in 30.82% improvement in energy yield. Therefore, 30% improvement in energy yield is directly reflected as saving in PV system cost due to reduction of the PV modules surface area.


Sign in / Sign up

Export Citation Format

Share Document