Numerical Investigation of the Thermo-Hydraulic Characteristics for Annular Vortex Tube: A Comparison With Ranque–Hilsch Vortex Tube

2020 ◽  
Vol 142 (11) ◽  
Author(s):  
Milad Khosravi ◽  
Meisam Sadi ◽  
Ahmad Arabkoohsar ◽  
Amir Ebrahimi-Moghadam

Abstract In this work, a new configuration of the vortex tubes (VTs), called annular VTs, is proposed to improve the temperature separation performance. In the proposed configuration, a compartment has been added on the top of the tube wall that the separated hot outlet is repassed inside it over the hot tube. An axisymmetric swirl model of the Ranque–Hilsch (RH) and annual VTs is numerically simulated, and the thermo-hydraulic characteristics of them are compared for cold mass fractions ranging 0.2–0.8. The results illustrated that a small secondary circulation is created near the cold outlet of the RHVT that is not observed in the annular model. This secondary circulation is a destructive mechanism in VTs that results in more mixing and higher temperature in the cold outlet section. Analyzing the results indicates that using annular VT causes up to 12.51% increment of the hot outlet temperature compared to the RHVT model (which occurs at a mass fraction of 0.23). Also, up to 9.23% reduction of the cold outlet temperature is occurred (which occurs at a mass fraction of 0.37). These explanations prove the improvement of the annular VT compared to that of the conventional VTs.

2013 ◽  
Vol 397-400 ◽  
pp. 205-208
Author(s):  
Wen Chuan Wang ◽  
Xiang Jun Fang ◽  
Shi Long Liu ◽  
Wen Long Sun

This paper aims to investigate fixed composition natural gases including N2, CH4 and C2H4 energy separation effect in vortex tube. Energy separation phenomena of those gases were investigated by means of three-dimensional Computational Fluid Dynamics (CFD) method. Flow fields of natural gases in fixed inlet boundary conditions were simulated. The results main factors were found that affect the energy separation with cold mass fraction being 0.7 and pressure drop ratio being 3.90. At the same time, this paper has illustrated the effects and tendencies of energy separation with gases in the tube under the same cold mass flow fraction and cold pressure ratio. The results show mixture gases total temperature difference effect is unchanged varied with the cold mass fraction; CH4% has no effect on the vortex cold end temperature separation, but varied of CH4% has an influence in total temperature and hot end separation effect; total temperature separation effect of CH4% was divided into two sections, one is0%-80%, and the other 80%-100%.


2014 ◽  
Vol 18 (4) ◽  
pp. 1159-1171
Author(s):  
Hossein Azizi ◽  
Reza Saleh ◽  
Mohsen Kahrom ◽  
Reza Andalibi

A computational fluid dynamics (CFD) model is used to compare the effect of different Reynolds Averaged Navier-Stokes (RANS) based turbulence models in predicting the temperature separation and power separation in a Ranque-Hilsch vortex tube. Three first order turbulence models (standard k-?, Renormalized group RNG and shear stress transport (SST) K-? model) together with a second order numerical scheme are surveyed in the present work. The simulations are done in 2D steady, axisymetric with high swirl flow model. The performance curves (hot and cold outlet temperatures and power separation versus hot outlet mass fraction) obtained by using these turbulence models are compared with the experimental results in different cold mass fractions. The aim is to select an appropriate turbulence model for the simulation of the flow phenomena. Because of large discrepancy between 2D and experiment, validation in 3D model is also considered. The performance analysis shows that among all the turbulence models investigated in this study, temperature separation predicted by the Renormalized group RNG model is closer to the experimental results.


2019 ◽  
pp. 418-418
Author(s):  
Lizan Zangana ◽  
Ramzi Barwari

In this manuscript, both experimental and numerical investigations have been carried out to study the mechanism of separation energy and flow phenomena in the counter flow vortex tube. This manuscript presents a complete comparison between the experimental investigation and CFD analysis. The experimental model was manufactured with (total length of 104 mm and the inner diameter of 8 mm, and made of cast iron) tested under different inlet pressures (4, 5 and 6 bar). The thermal performance has been studied for hot and cold outlet temperature as a function of mass fraction ? (0.3- 0.8). Three-dimensional numerical modeling using the k-? model used with code (Fluent 6.3.26). Two types of velocity components are studied (axial and swirl). The results show any increase in both cold mass fraction and inlet pressure caused to increase ?Tc, and the maximum ?Tc value occurs at P = 6 bar. The coefficient of performance (COP) of two important factors in the vortex tube which are a heat pump and a refrigerator have been evaluated, which ranged from 0.25 to 0.74. A different axial location (Z/L = 0.2, 0.5, and 0.8) was modeled to evaluate swirl velocity and radial profiles, where the swirl velocity has the highest value. The maximum axial velocity is 93, where it occurs at the tube axis close to the inlet exit (Z/L=0.2). The results showed a good agreement for experimental and numerical analysis.


2018 ◽  
Vol 26 (7) ◽  
pp. 271-285 ◽  
Author(s):  
Arkan Khikhal Husain ◽  
Mahmood Attallah Mashkoor ◽  
Fuad Abdul Ameer Khalaf

This work presents a technique for design optimization of a gas turbine tubular combustor. This technique is based on the use of computational fluid dynamics (CFD) with CFX solver to reduce emission gases by using multi-line of fuel injection in secondary zone. This research relates the mass fraction of the multi-line of fuel injection as well as the equivalence ratio of the tubular combustion chamber designed for methane fuel. By using k-ε as turbulent model and Probability Density Function (PDF) Flamelet as combustion model. The operating casing data of micro size gas turbine are used, the validation of fuel flow mixing and combustion analyses were carried out with a focus on species concentration in the combustor outlet section. With variant fuel mass flow rate fraction in fuel lines (F2/F1),  It was found that, with the new design NO reduced about 56% for the mass fraction 3 in high equivalence ratio and about 30%for the mass fraction 1 for a low equivalence ratio, while reduction in outlet temperature profile (pattern factor) is about 45% → 35%.


2012 ◽  
Vol 516-517 ◽  
pp. 1219-1223 ◽  
Author(s):  
Ying Fu Liu ◽  
Guang Ya Jin

Use of vortex tube as an expansion device in transcritical CO2 cycle could reduce the throttle loss and improve the coefficient of performance. In this paper, a vortex tube expansion two-stage transcritical CO2 refrigeration cycle(VTTC) is established and compared to that of the two-stage transcritical CO2 refrigeration cycle with throttle valve(TVTC). Thermodynamic analysis results indicate that there is also an optimum heat rejection pressure for the vortex tube cycle, and the COP improvement is 2.4%~16.3% at given conditions. Decrease in evaporation temperature or increase in gas-cooler outlet temperature decrease the COP, but the COP improvement will increase. The effect of cold mass fraction on the COP is negligible, but the COP improvement will increase fast with the increase of cold mass fraction.


2020 ◽  
Vol 86 (12) ◽  
pp. 15-22
Author(s):  
N. A. Bulayev ◽  
E. V. Chukhlantseva ◽  
O. V. Starovoytova ◽  
A. A. Tarasenko

The content of uranium and plutonium is the main characteristic of mixed uranium-plutonium oxide fuel, which is strictly controlled and has a very narrow range of the permissible values. We focused on developing a technique for measuring mass fractions of uranium and plutonium by controlled potential coulometry using a coulometric unit UPK-19 in set with a R-40Kh potentiostat-galvanostat. Under conditions of sealed enclosures, a special design of the support stand which minimized the effect of fluctuations in ambient conditions on the signal stability was developed. Optimal conditions for coulometric determination of plutonium and uranium mass fractions were specified. The sulfuric acid solution with a molar concentration of 0.5 mol/dm3 was used as a medium. Lead ions were introduced into the background electrolyte to decrease the minimum voltage of hydrogen reduction to –190 mV. The addition of aluminum nitride reduced the effect of fluoride ions participating as a catalyst in dissolving MOX fuel samples, and the interfering effect of nitrite ions was eliminated by introducing a sulfamic acid solution into the cell. The total content of uranium and plutonium was determined by evaluation of the amount of electricity consumed at the stage of uranium and plutonium co-oxidation. Plutonium content was measured at the potentials, at which uranium remains in the stable state, which makes it possible to subtract the contribution of plutonium oxidation current from the total oxidation current. The error characteristics of the developed measurement technique were evaluated using the standard sample method and the real MOX fuel pellets. The error limits match the requirements set out in the specifications for MOX fuel. The technique for measuring mass fractions of uranium and plutonium in uranium-plutonium oxide nuclear fuel was certified. The relative measurement error of the mass fraction of plutonium and uranium was ±0.0070 and ±0.0095, respectively. The relative error of the ratio of the plutonium mass fraction to the sum of mass fractions of uranium and plutonium was ±0.0085.


2021 ◽  
Vol 11 (13) ◽  
pp. 6111
Author(s):  
He Li ◽  
Xiaodong Wang ◽  
Jiuxin Ning ◽  
Pengfei Zhang ◽  
Hailong Huang

This paper investigated the effect of air leaking into the working fluid on the performance of a steam ejector. A simulation of the mixing of air into the primary and secondary fluids was performed using CFD. The effects of air with a 0, 0.1, 0.3 and 0.5 mass fraction on the entrainment ratio and internal flow structure of the steam ejector were studied, and the coefficient distortion rates for the entrainment ratios under these air mass fractions were calculated. The results demonstrated that the air modified the physical parameters of the working fluid, which is the main reason for changes in the entrainment ratio and internal flow structure. The calculation of the coefficient distortion rate of the entrainment ratio illustrated that the air in the primary fluid has a more significant impact on the change in the entrainment ratio than that in the secondary fluid under the same air mass fraction. Therefore, the air mass fraction in the working fluid must be minimized to acquire a precise entrainment ratio. Furthermore, this paper provided a method of inspecting air leakage in the experimental steam ejector refrigeration system.


2016 ◽  
Vol 138 (8) ◽  
Author(s):  
Cong Qi ◽  
Yongliang Wan ◽  
Lin Liang ◽  
Zhonghao Rao ◽  
Yimin Li

Considering mass transfer and energy transfer between liquid phase and vapor phase, a mixture model for boiling heat transfer of nanofluid is established. In addition, an experimental installation of boiling heat transfer is built. The boiling heat transfer of TiO2–water nanofluid is investigated by numerical and experimental methods, respectively. Thermal conductivity, viscosity, and boiling bubble size of TiO2–water nanofluid are experimentally investigated, and the effects of different nanoparticle mass fractions, bubble sizes and superheat on boiling heat transfer are also discussed. It is found that the boiling bubble size in TiO2–water nanofluid is only one-third of that in de-ionized water. It is also found that there is a critical nanoparticle mass fraction (wt.% = 2%) between enhancement and degradation for TiO2–water nanofluid. Compared with water, nanofluid enhances the boiling heat transfer coefficient by 77.7% when the nanoparticle mass fraction is lower than 2%, while it reduces the boiling heat transfer by 30.3% when the nanoparticle mass fraction is higher than 2%. The boiling heat transfer coefficients increase with the superheat for water and nanofluid. A mathematic correlation between heat flux and superheat is obtained in this paper.


Author(s):  
Shao Lifan ◽  
Ge Yuan ◽  
Kong Dejun

In order to improve the friction and wear properties of Cu10Al–MoS2 coating, the addition of CeO2 is one of the present research hot spots. In this work, Cu10Al–MoS2 coatings with different CeO2 mass fractions were successfully fabricated on Q235 steel using a laser cladding. The microstructure and phase compositions of obtained coatings were analyzed using an ultra-depth of field microscope and X-ray diffraction, respectively. The friction-wear test was carried out under oil lubrication using a ball-on-disk wear tester, and the effects of CeO2 mass fraction on the microstructure, hardness, and friction-wear properties were studied, and the wear mechanism was also discussed. The results show that the laser cladded Cu10Al–MoS2 coatings with the different CeO2 mass fractions were mainly composed of Cu9Al4, Cu, AlFe3, Ni, MoS2, and CeO2 phases. The Vickers-hardness (HV) of Cu10Al–8MoS2–3CeO2, Cu10Al–8MoS2–6CeO2, and Cu10Al–8MoS2–9CeO2 coatings was 418, 445, and 457 HV0.3, respectively, which indicates an increase in hardness with the increase of CeO2 mass fraction. The average coefficients of friction (COF) and wear rates decrease with the increase of CeO2 mass fraction, presenting the outstanding friction reduction and wear resistance performances. The wear mechanism of Cu10Al–MoS2 coatings is changed from abrasive wear with slight fatigue wear to abrasive wear with the increase of CeO2 mass fraction.


Sign in / Sign up

Export Citation Format

Share Document