Recuperator Performance Assessment in Humidified Micro Gas Turbine Applications Using Experimental Data Extended with Preliminary Support Vector Regression Model Analysis

Author(s):  
Ward De Paepe ◽  
Alessio Pappa ◽  
Diederik Coppitters ◽  
Marina Montero Carrero ◽  
Panagiotis Tsirikoglou ◽  
...  

Abstract Although the positive impact of cycle humidification on the performance of micro Gas Turbines (mGTs) has already been proven numerically and experimentally, very detailed modeling of the system performance remains challenging, especially the determination of the recuperator effectiveness, which has the highest impact on the final cycle performance. Indeed, the recuperator performance depends strongly on the mass flow rate of the air stream and its humidification level, two parameters that are difficult to measure accurately. Accurate modeling of the recuperator performance under both dry and humidified conditions is thus essential for correct assessment of the potential of humidified mGT cycles. In this paper, we present a detailed analysis of the recuperator performance under humidified conditions using averaged experimental data, extended with the application of a Support Vector Regression (SVR) on a time series to improve noise-modeling of the output signal, and thus enhance the accuracy of the monitoring process. In a first step, the missing experimental parameters were obtained indirectly, using experimental data in combination with the compressor map. Despite the low accuracy, some general trends could be observed, indicating that the recuperator, despite having an increased total exchanged heat flux, is too small to exploit the full potential of the humidification. In a second step, by means of the SVR model, a first attempt was made to improve the accuracy and reduce the scatter on the recuperator performance determination. The predicted results with the SVR indicated indeed a reduced scatter, opening a pathway towards online recuperator performance prediction.

Author(s):  
Ward De Paepe ◽  
Alessio Pappa ◽  
Diederik Coppitters ◽  
Marina Montero Carrerro ◽  
Panagiotis Tsirikoglou ◽  
...  

Abstract Cycle humidification applied to micro Gas Turbines (mGTs) offers a solution to overcome their limited operational flexibility in terms of variable electrical and thermal power production when used in a Combined Heat and Power (CHP) application. Although the positive impact of this cycle humidification on the performance has already been proven numerically and experimentally, very detailed modeling of the system performance remains challenging, especially the determination of the recuperator effectiveness, which has the highest impact on the final cycle performance. Indeed, the recuperator performance depends strongly on the mass flow rate of the air stream and its humidification level, two parameters that are difficult to measure accurately. Accurate modeling of the recuperator performance under both dry and humidified conditions is thus essential for correct assessment of the potential of humidified mGT cycles in Decentralized Energy Systems (DES). In this paper, we present a detailed analysis of the recuperator performance under humidified conditions using averaged experimental data, extended with the application of a Support Vector Regression (SVR) on a time series to improve noise-modeling of the output signal, and thus enhance the accuracy of the monitoring process. In a first step, the missing experimental parameters, air mass flow rate and humidity level, were obtained indirectly, using rotational speed, fuel flow rate, exhaust gas composition and pressure level measurements in combination with the compressor map. Despite the low accuracy, some general trends regarding the recuperator performance could be observed based on these experimental data, indicating that the recuperator, despite having an increased total exchanged heat flux, is actually too small to exploit the full potential of the humidification. In a second step, by means of the SVR model, a first attempt was made to improve the accuracy and reduce the scatter on the recuperator performance determination. The predicted results with the SVR indicated indeed a reduced scatter on the determinations of the air mass flow rate and the amount of introduced water, opening a pathway towards online recuperator performance prediction.


2021 ◽  
pp. 147592172110053
Author(s):  
Qian Ji ◽  
Li Jian-Bin ◽  
Liu Fan-Rui ◽  
Zhou Jian-Ting ◽  
Wang Xu

The seven-wire strands are the crucial components of prestressed structures, though their performance inevitably degrades with the passage of time. The ultrasonic guided wave methods have been intensely studied, owing to its tremendous potential for full-scale applications, among the existing nondestructive testing methods, for evaluating the stress status of strands. We have employed the theoretical and finite element methods to solve the dispersion curve of single wire and steel strands under various boundary conditions. Thereafter, the singular value decomposition was adopted to work with the simulated and experimental signals for extracting a feature vector that carries valuable stress status information. The effectiveness of the vector was verified by analyzing the relationship between the vector and the stress level. The vector was also used as an input to establish a support vector regression model. The accuracy of the model has been discussed for different sample sizes. The results show that the fundamental mode dispersion curve offset on the high-frequency part and cut-off frequency increases as the boundary constraints enhance. Simulated and experimental results have demonstrated the effectiveness and potential of the proposed support vector regression method for evaluating the stress level in the strands. This method performs well even at low stress levels and the reliability can be enhanced by adding more samples.


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1320
Author(s):  
Yuanyuan Sun ◽  
Gongde Xu ◽  
Na Li ◽  
Kejun Li ◽  
Yongliang Liang ◽  
...  

Both poor cooling methods and complex heat dissipation lead to prominent asymmetry in transformer temperature distribution. Both the operating life and load capacity of a power transformer are closely related to the winding hotspot temperature. Realizing accurate prediction of the hotspot temperature of transformer windings is the key to effectively preventing thermal faults in transformers, thus ensuring the reliable operation of transformers and accurately predicting transformer operating lifetimes. In this paper, a hot spot temperature prediction method is proposed based on the transformer operating parameters through the particle filter optimization support vector regression model. Based on the monitored transformer temperature, load rate, transformer cooling type, and ambient temperature, the hotspot temperature of a dry-type transformer can be predicted by a support vector regression method. The hyperparameters of the support vector regression are dynamically optimized here according to the particle filter to improve the optimization accuracy. The validity and accuracy of the proposed method are verified by comparing the proposed method with a traditional support vector regression method based on the real operating data of a 35 kV dry-type transformer.


Author(s):  
Yumei Liu ◽  
Ningguo Qiao ◽  
Congcong Zhao ◽  
Jiaojiao Zhuang ◽  
Guangdong Tian

Accurate vibration time series modeling can mine the internal law of data and provide valuable references for reliability assessment. To improve the prediction accuracy, this study proposes a hybrid model – called the AR–SVR–CPSO hybrid model – that combines the auto regression (AR) and support vector regression (SVR) models, with the weights optimized by the chaotic particle swarm optimization (CPSO) algorithm. First, the auto regression model with the difference method is employed to model the vibration time series. Second, the support vector regression model with the phase space reconstruction is constructed for predicting the vibration time series once more. Finally, the predictions of the AR and SVR models are weighted and summed together, with the weights being optimized by the CPSO. In addition, the data collected from the reliability test platform of high-speed train transmission systems and the “NASA prognostics data repository” are used to validate the hybrid model. The experimental results demonstrate that the hybrid model proposed in this study outperforms the traditional AR and SVR models.


Sign in / Sign up

Export Citation Format

Share Document