Thermodynamic analysis in bubbling fluidized bed dryers with spiral and cone angles

Author(s):  
Hirakh Jyoti Das ◽  
Pinakeswar Mahanta ◽  
Rituraj Saikia ◽  
Plabon Tamuly

Abstract The effective thermodynamic analysis is quite necessary for proper system design performance and optimization of system processes. Energy is concerned with the quantitative evaluation of system processes. Nonetheless, exergy gives a qualitative analysis of the system processes. The present investigation deals with the study of exergy and energy analysis of the paddy drying processes in two tapered fluidized bed dryers having tapered angle 5° and 10° respectively and one cylindrical bubbling fluidized bed dryer. The energy utilization (EU) and energy utilization ratio (EUR) for various operating parameters such as inlet air velocity, mass of paddy, temperature, a spiral and cone angle are investigated. Similar to that, the exergetic efficiency and the rate of exergy destruction are also studied for the same operating parameters. The EU and EUR are found to have an increasing order when the inlet air velocity, temperature and mass of paddy increase. The trend of EU and EUR also increase with an addition of a spiral inside a dryer. The increasing cone angle of dryer have a similar impact on EU and EUR. Similarly, exergy utilization and exergetic efficiency also show an increment with the rise in inlet air velocity, mass of paddy, cone angle of dryer and temperature. Incorporation of a spiral inside a dryer improves exergy utilization and exergetic efficiency. Hence, conical dryer with higher cone angle is found to be the best option for drying.

REAKTOR ◽  
2016 ◽  
Vol 16 (1) ◽  
pp. 24 ◽  
Author(s):  
Suherman Suherman ◽  
Rona Trisnaningtyas

Energy and exergy analysis of cassava starch drying in continuous vibrated fluidized bed dryer were carried out to assess the performance of the system in terms of energy utilization ratio, energy efficiency, exergy inflow and outflow, exergy loss, and exergetic efficiency. The results showed cassava starch has starch content 87%, degree of whiteness 95%, negative fiber content, sperichal granula with average diameter12.32 μm, orthorhombic crystal structure and crystal size 47.467 nm . Energy utilization and energy utilization ratio increased from 0.08 to 0.20 J/s and 0.35 to 0.4 as the drying temperature  increased from 50 to 70 oC. Energy efficiency increased from 13.80 % to 23.31 %, while exergy inflow, outflow, and losses increased from 4.701 to 14.678, 2.277 to 6.344, and 2.424 to 8.334 J/s respectively in the above temperature range. Exergetic efficiency decreased with increase in drying air temperature, while exergetic improvement potential increased with increased drying air temperature. Keywords: Cassava starch, continuous drying, energy and exergy analysis, vibrated fluidized bed Abstrak Analisis energi dan eksergi pengeringan pati tapioka menggunakan pengering kontinu unggun fluidisasi getar, telah dilakukan untuk menilai kinerja sistem dalam bentuk utilisasi energi, efisiensi energi, eksergi masuk dan keluar, eksergi hilang dan efisiensi eksergi. Hasil analisis pati memiliki kandungan starch 87%, tingkat keputihan 95%, kandungan serat negatif, bentuk partikel granular spherical dengan diameter 12,32 μm, struktur kristal orthorhombic dan ukuran kristal sebesar 47,467 nm. Peningkatan suhu pengering dari 50 menjadi 70 0C akan meningkatkan utilisasi energi dan rasio utilisasi energi dari 0,08 menjadi 0,20 J/s dan 0,35 menjadi 0,4. Efisiensi energi meningkat dari 13,80% hingga 23,31%, sedangkan eksergi masuk dan keluar, eksergi hilang meningkat dari 4,701 menjadi 14,678, 2,277 menjadi 6,344, dan 2,424 menjadi 8,334 J/s. Efisiensi eksergi menurun dengan naiknya suhu sedangkan potensi pengembangan eksergi meningkat dengan naiknya suhu. Kata kunci:. Analisis energi dan eksergi, pati tapioka, pengeringan kontinu, unggun fluidisasi getar


Author(s):  
Gholamreza Askari ◽  
Atefe Babaki ◽  
Zahra Emamdjomeh

In order to conserve cuminum cyminum L. during long storage periods, the drying kinetics of this seed undergoing microwave-assisted fluidized bed dryer at various microwave output power (300, 600 and 900w), air velocity (10, 15 and 20 m/s) and air temperatures (45, 55 and 65ᵒc) were studied. The main aim of this research is developing a mathematical model of mass transfer to investigate the microwave-assisted fluidized bed drying of cuminum cyminum L. seed. In this paper, we tried to discover a good model to evaluate moisture effective diffusivity (Deff). Keywords: cuminum cyminum L, microwave-assisted drying, mathematical modeling,


2019 ◽  
Vol 142 (2) ◽  
Author(s):  
Krzysztof Głód ◽  
Janusz Lasek ◽  
Krzysztof Słowik ◽  
Jarosław Zuwała ◽  
Daniel Nabagło ◽  
...  

Abstract During the combustion of solid fuels, the undesired effects of ash transformation include bed agglomeration, slagging, and fouling processes. In particular, a problematic consequence of bed agglomeration is the defluidization process, resulting from the disappearance of gaseous bubbles that are created behind air distributors. Different solutions can be applied against the agglomeration process. One possible method is to apply some additives that influence the ash behavior, thus inhibiting the agglomeration process. This paper presents the results of investigations into ash-related issues in a laboratory-scale bubbling fluidized bed (BFB) reactor. In particular, the impact of additives (kaolin, halloysite, fly ash, and the residuals from wet desulfurization system (IMOS)) on bed agglomeration was investigated. It was found that the addition of these compounds increased the defluidization time from ∼109 min (without additive) to ∼285 min in the BFB (with the addition of 0.1 g/min of kaolin). The morphology of additive (kaolin and halloysite) transformation after their addition into the combustion chamber was discussed. Another interesting phenomenon is that residuals from the IMOS exhibited the ability to be an additive against the agglomeration process. The defluidization time can be also significantly increased by the simultaneous application of the additive and the control of fluidization air velocity. The procedure of periodical bed moving by impulse primary air feeding against defluidization (PADM) is suggested and discussed. The PADM procedure resulted in a 36% reduction of additive, thus reducing the cost of measures against ash-related issues.


2021 ◽  
Vol 21 (3) ◽  
pp. 170-182
Author(s):  
Russul A. Kadhim ◽  
Ekhlas M. Fayyadh ◽  
Sadeq H. Bakhy

This study represents an attempt to reduce the drying time of wet grain wheat of the fluidized bed dryer (FBD), using straight blades, and debates the effect of stirrer on the whole drying time at different static bed heights. Experiments for FBD were conducted at the low velocity of air supply (1.45 cm/s) with moisture content for grain wheat 12% and ambient temperature of 37°C for each static bed height (9, 12, and 15 cm). FBD was made from a glass cylindrical column with inside diameter 4.6 cm, outside diameter (5.2 cm) and length (116 cm). The results showed an enhancement of (12- 20.5%) in the total drying time for bed height (9 and 15) cm, respectively. Also, increasing bed height from 9 cm to 15 cm possesses no influence on the equilibrium content of moisture in both techniques of drying either stirred fluidized bed or conventional fluidized bed.  


2021 ◽  
Vol 913 (1) ◽  
pp. 012039
Author(s):  
Sukmawaty ◽  
G M D Putra ◽  
I Asmoro ◽  
S Syahrul ◽  
M Mirmanto

Abstract This research aims to know the heat transfer process on the fluidized bed dryer for corn material. In this study conducted observations on the temperature and heat produced during the drying process, with three different pipe heat exchanger: spiral, parallel, and combination; The air of the air was 2 m/s, 4 m/s, and 6 m/s and the mass of corn material was1.5 kg with an initial moisture content of 24%. Test results showed that the highest-produced temperature in the combination heat exchanger pipe with a drying room temperature averaged 54°C. The value of the highest convection coefficient of heat transfer in the combination heat exchanger pipe flow treatment with the air velocity of 6 m/s by 29.4 W/m2K. The heat energy that enters at the treatment of combination heat exchanger pipe with the air speed of 6 m/s by 1774 Watts. Heat energy is lost through the highest wall drying chamber at the combination heat exchanger pipe flow treatment with the air velocity of 6 m/s by 409 Watts. The heat energy used is 335 Watts to dry the highest material in the combination heat exchanger pipe flow treatment with the air speed of 6 m/s.


2007 ◽  
Vol 25 (4) ◽  
pp. 261-271
Author(s):  
Huseyin Gunerhan

In this study, an investigation on olive cake as on alternative fuel and effect of drying air temperature and drying air velocity is conducted. In many developing countries olive cake is considered as a biomass and can be used in very large amounts at very low cost. The effect of drying air temperature and air velocity at constant humidity conditions was studied. A process for drying of olive cake in a fluidized bed dryer is proposed. Results of these experiments of the olive cake indicated that olive cake has an excellent potential to be a renewable source of energy and suitable material for these types of dryers.


2021 ◽  
Vol 239 ◽  
pp. 00007
Author(s):  
Carlos Vargas-Salgado ◽  
Lina Montuori ◽  
Manuel Alcázar-Ortega

Despite being a renewable source, biomass as fuel for power generation is still not completely exploited. In biomass gasification plants, control operations are crucial for the proper management of the plant. This paper describes the results of a regulation control applied to an experimental biomass bubbling fluidized bed (BFB) gasification plant. The aim of implementing the system is to improve the biomass gasification process, increasing the efficiency and ensuring the safety in the plant operation. The equivalence ratio (ER) is one of the main parameters in a gasification process. To improve the ER, the airflow input is controlled, measuring the air velocity through an anemometer. On the other hand, the biomass flow is controlled modifying the speed of the screw conveyor using an inverter for regulating the frequency of its electric motor. A PLC is used for programming the instructions to implement control functions and to store the data given by the measurement devices. Once implemented the control system, the biomass gasification plant could work either; manually o automatically, allowing to adjust ER, increasing efficiency of the process. Finally, some tests are done to validate the control system, using the acquired data to improve the process.


2017 ◽  
Vol 12 (3) ◽  
Author(s):  
Reza Amiri Chayjan ◽  
Mohammad Kaveh ◽  
Nesa Dibagar ◽  
Moein Zarrin Nejad

Abstract Thin-layer drying kinetics of pistachio nuts were examined experimentally as a function of drying conditions in a fluidized bed dryer with microwave pretreatment. Four drying specifications of diffusivity, shrinkage, specific energy consumption and total color change were calculated and the effects of parameters were studied. Numerous experimentations were conducted at three levels of air temperature (40, 55, 70 °C), air velocity (1.2, 2.93, 4.01 m/s), and microwave power (270, 450, 630 W). The variation ranges of diffusivity, shrinkage, energy consumption and color change were recorded from 5.01×10–10 to 5.07×10–9 m2/s, from 26.95 % to 13.13 %, from 1.04 to 9.23 kWh and from 10.44 to 17.17, respectively. According to response surface methodology, optimum condition of drying process occurred at microwave power of 630, air temperature of 70 ˚C, and air velocity of 1.2 m/s. In this optimum point, the values of diffusivity, shrinkage, specific energy consumption and total color change were 4.865×10–9, 14.22 %, 2.164 kWh and 12.312, respectively.


2021 ◽  
pp. 71-82
Author(s):  
Sukanta Das ◽  
Pinakeswar Mahanta ◽  
Abhijit Sinha ◽  
Laxman Mishra

Sign in / Sign up

Export Citation Format

Share Document