Transmissibility Enhanced Inverse Chatter Stability Solution

Author(s):  
Yen-Po Liu ◽  
Yusuf Altintas

Abstract The structural dynamics of a machine tool at the tool center point characterizes its vibration response and machining stability which affects productivity. The dynamics are mostly dominated by the spindle-holder-tool assembly whose main vibration mode can change during machining due to centrifugal forces, thermal expansion, and gyroscopic moments generated at high spindle speeds. This paper proposes the identification of the spindle's in-process modal parameters: natural frequency, damping ratio and modal constant, by using a limited number of vibration transmissibility and critical chatter stability measurements. The classical inverse stability solution, which tunes the modal parameters to minimize prediction errors in chatter stability limits, is augmented with vibration transmissibility under two methods: (1) transmissibility-enhanced inverse stability solution: the modal parameters are updated to minimize prediction errors in chatter stability, and vibration transmissibility; (2) artificial neural network (ANN)-integrated inverse stability solution: the ANN uses vibration transmissibility to estimate the natural frequency and damping ratio, such that the inverse stability solution only needs to identify the modal constant. While both methods are experimentally validated, it is shown that the transmissibility-enhanced inverse stability solution is a more effective approach than the time-consuming ANN alternative for the estimation of in-process spindle dynamics.

2018 ◽  
Vol 1 (1) ◽  
pp. 16-23 ◽  
Author(s):  
Siva Sankara Babu Chinka ◽  
Balakrishna Adavi ◽  
Srinivasa Rao Putti

In this paper, the dynamic behavior of a cantilever beam without and with crack is observed. An elastic Aluminum cantilever beams having surface crack at various crack positions are considered to analyze dynamically. Crack depth, crack length and crack location are the foremost parameters for describing the health condition of beam in terms of modal parameters such as natural frequency, mode shape and damping ratio. It is crucial to study the influence of crack depth and crack location on modal parameters of the beam for the decent performance and its safety. Crack or damage of structure causes a reduction in stiffness, an intrinsic reduction in resonant frequencies, variation of damping ratios and mode shapes. The broad examination of cantilever beam without crack and with crack has been done using Numerical analysis (Ansys18.0) and experimental modal analysis. To observe the exact higher modes of beam, discretize the beam into small elements. An experimental set up was established for cantilever beam having crack and it was excited by an impact hammer and finally the response was obtained using PCB accelerometer with the help sound and vibration toolkit of NI Lab-view. After obtaining the Frequency response functions (FRFs), the natural frequencies of beam are estimated using peak search method. The effectiveness of experimental modal analysis in terms of natural frequency is validated with numerical analysis results. This paper contains the study of free vibration analysis under the influence of crack at different points along the length of the beam.


2022 ◽  
Author(s):  
Rocío García-Cuevas ◽  
Javier F. Jiménez-Alonso ◽  
Carlos Renedo M.C. ◽  
Francisco Martinez

<p>The evaluation of the vibration performance of footbridges due to walking pedestrians is an issue of increasing importance in current footbridge design practice. The growing trend of slender footbridges with long spans and light materials has led to serviceability problems in lateral vibrations, which occur when the number of pedestrians reaches a “critical number”. Considering the mode of vibration in which the lateral instability is more likely to develop, the structural response depends on the modal characteristics of the footbridge; in particular, the natural frequency and the damping ratio. These modal parameters are stochastic variables, as it is not possible to determine them without a level of uncertainty. Thus, the purpose of this paper is to obtain the value of the lateral dynamic response of slender footbridges with a certain confidence level under uncertainty conditions. The uncertainties of those modal parameters are considered using a probabilistic approach. Both the natural frequency and the damping ratio are modelled as uncorrelated random variables that follow a predetermined probabilistic distribution function. Consequently, the structural response will also be described by a probabilistic distribution function, which can be estimated through Monte Carlo numerical simulations. As a result, the study allows the footbridge lateral response and the critical number of pedestrians to be calculated for different confidence levels and load scenarios, especially for crowd densities above the “critical number”.</p>


2013 ◽  
Vol 668 ◽  
pp. 612-615
Author(s):  
Li Zhang ◽  
Guang Yuan Nie ◽  
Hong Wu ◽  
Jie Chen

In this paper, the simulation with ANSYS software and the experimental modal analysis by impacting are carried out on the electronic button-sewing machine shell. The modal parameters, such as the natural frequency, the damping ratio and the mode shape, are obtained. Comparative analysis of their results shows that the mode shapes of the machine shell are mainly the outward-expanding and inward-contracting vibrations, which provides a useful reference for vibration and noise reduction of the electronic button-sewing machine.


2012 ◽  
Vol 159 ◽  
pp. 170-175
Author(s):  
Lv Gao Lin ◽  
Shen Shun Ying ◽  
Shu Qiong Chen ◽  
Xiao Tian Lv

Modal parameters for LG51SH broaching machine from operational responses are studied to examine the dynamic properties of mechanical structure. The operational modal is analyzed using PolyMAX method with responsive data of key point in broaching machine, which is excited in practical broaching operation and tested by LMS SCADAIII-105 system. The identified steady state modal, representative modal shape, modal damping ratio and natural frequency in broaching are presented. The test and analysis result shows that there are natural frequency of 38Hz and 192Hz, which are close to multiple of the fundamental frequency of cutting force in broaching, 6Hz, therefore, reasonable cutting velocity should be adopted to void producing fundamental frequency of cutting force in broaching.


2018 ◽  
Vol 162 ◽  
pp. 04020
Author(s):  
Ali Al-Ghalib ◽  
Fouad Mohammad

The concrete is liable to damage due to various stresses which compensate its adequacy and safety. The estimation of remaining strength in reinforced concrete beams when subjected to increased loading action utilizing vibration parameters is investigated. For this reason, three beams are loaded statically close to failure in various increasing load steps and then repaired. The beams are all of same dimensions, but are different in strength and range of defects introduced to each sample. Following each loading step, the experimental modal testing is utilized to collect the vibration parameters (natural frequency, damping ratio and mode shapes) of each beam when tested under free support boundary conditions. The use of vibration parameters for the purpose of damage identification are known to be an elaborate and lengthy process. On the other hand, they are successful for the structural health monitoring given that they are able to provide global on-site automated continuous monitoring. The paper features post analysis procedures for experimental modal measurements of three concrete samples to obtain and correlate the basic modal parameters (natural frequency, modal damping and mode shapes). The results of the extracted modal parameters and their combination are exploited in this research as quantified identification parameters. This paper concludes that modal parameters are successful in determining the location and quantity of structural degradation, when holistic approach considered through a system.


2013 ◽  
Vol 372 ◽  
pp. 459-462
Author(s):  
Ming Chang Tsai ◽  
Te Ching Hsiao ◽  
Shyh Chour Huang

In the past few years, it has become a tendency to develop machinery of high speeds and high precision. In order to meet the need for high-speed manufacturing of high precision components, the machine tools structure must be very stiff and have high cutting stability levels. Should the process of the firsthand milling be unstable, the effects include cutting tool breakages, decrease in surface accuracy and could even shorten the machine tolls lifespan. Thus, in the manufacturing of milling, chattering often causes problems for the manufacturer. To prevent cases of milling chattering, there is a need to use a chatter stability lobe to predict the chatter stability and to analyze the effect the modal-parameter has on the stability of milling. This research paper uses the Zero-Order Analytical Method (ZOA) to analyze and compare the effects modal-parameter (natural frequency, damping ratio, modal stiffness) has on the stability of the milling system. The results show that level of stiffness and the damping ratio influences the vertical shape of the chatter stability lobes while the natural frequency affects the lateral shape of the lobes.


2009 ◽  
Vol 407-408 ◽  
pp. 404-407 ◽  
Author(s):  
Hiroyuki Sasahara ◽  
Yoshihisa Naito

An objective of this study is to develop a new method for the prediction and the avoidance of chatter vibration in milling operation of thin-walled structure by using 3D-CAD and CAE approach. Also, a new identification method for the modal parameters of a vibration system by analyzing radiated sound pressure from vibrated workpiece accelerated by an impulse force is proposed. Then chatter stability lobes are predicted using those modal parameters. Stiffness and modal shapes of the workpiece were obtained using commercial finite element method (FEM) code, and the model was made by 3D-CAD. The damping ratio, which cannot be determined through FEM analysis, was identified from the relationship between the sound pressure radiated from the workpiece and the impulse force. Chatter stability limit was analyzed with the modal parameters obtained through these procedures, and compared with the cutting experiment on the chatter stability limit. The experimental and predicted stability limits are in good agreement. The proposed procedure will help to set the cutting conditions to avoid the chatter.


2020 ◽  
Vol 14 (3) ◽  
pp. 327-354
Author(s):  
Mohammad Omidalizarandi ◽  
Ralf Herrmann ◽  
Boris Kargoll ◽  
Steffen Marx ◽  
Jens-André Paffenholz ◽  
...  

AbstractToday, short- and long-term structural health monitoring (SHM) of bridge infrastructures and their safe, reliable and cost-effective maintenance has received considerable attention. From a surveying or civil engineer’s point of view, vibration-based SHM can be conducted by inspecting the changes in the global dynamic behaviour of a structure, such as natural frequencies (i. e. eigenfrequencies), mode shapes (i. e. eigenforms) and modal damping, which are known as modal parameters. This research work aims to propose a robust and automatic vibration analysis procedure that is so-called robust time domain modal parameter identification (RT-MPI) technique. It is novel in the sense of automatic and reliable identification of initial eigenfrequencies even closely spaced ones as well as robustly and accurately estimating the modal parameters of a bridge structure using low numbers of cost-effective micro-electro-mechanical systems (MEMS) accelerometers. To estimate amplitude, frequency, phase shift and damping ratio coefficients, an observation model consisting of: (1) a damped harmonic oscillation model, (2) an autoregressive model of coloured measurement noise and (3) a stochastic model in the form of the heavy-tailed family of scaled t-distributions is employed and jointly adjusted by means of a generalised expectation maximisation algorithm. Multiple MEMS as part of a geo-sensor network were mounted at different positions of a bridge structure which is precalculated by means of a finite element model (FEM) analysis. At the end, the estimated eigenfrequencies and eigenforms are compared and validated by the estimated parameters obtained from acceleration measurements of high-end accelerometers of type PCB ICP quartz, velocity measurements from a geophone and the FEM analysis. Additionally, the estimated eigenfrequencies and modal damping are compared with a well-known covariance driven stochastic subspace identification approach, which reveals the superiority of our proposed approach. We performed an experiment in two case studies with simulated data and real applications of a footbridge structure and a synthetic bridge. The results show that MEMS accelerometers are suitable for detecting all occurring eigenfrequencies depending on a sampling frequency specified. Moreover, the vibration analysis procedure demonstrates that amplitudes can be estimated in submillimetre range accuracy, frequencies with an accuracy better than 0.1 Hz and damping ratio coefficients with an accuracy better than 0.1 and 0.2 % for modal and system damping, respectively.


Sign in / Sign up

Export Citation Format

Share Document