Exploring the Effects of Piston Bowl Geometry and Injector Included Angle On Dual-Fuel and Single-Fuel RCCI

Author(s):  
Deivanayagam Hariharan ◽  
Mozhgan Rahimi Boldaji ◽  
Ziming Yan ◽  
Brian Gainey ◽  
Benjamin Lawler

Abstract Reactivity Control Compression Ignition (RCCI) is a Low-Temperature Combustion (LTC) technique that have been proposed to meet the current demand for high thermal efficiency and low engine-out emissions. However, its requirement of two separate fuel systems has been one of its major challenges in the last decade. This leads to the single-fuel RCCI concept, where the secondary fuel is generated from the primary fuel through CPOX reformation. After studying three different fuels, diesel was found to be the best candidate for the reformation process, where the reformed gaseous fuel (with lower reactivity) was used as the secondary fuel and the parent diesel fuel (with higher reactivity) was used as the primary fuel. Previously, the effects of the start of injection (SOI) timing of diesel and the energy-based blend ratio were studied in detail. In this study, the effect of piston profile and the injector included angles were experimentally studied using both conventional fuel pairs and reformate RCCI. A validated CFD model was also used for a better understanding of the experimental trends. Comparing a re-entrant bowl piston with a shallow bowl piston, the latter showed better thermal efficiency, regardless of the fuel combination, due to its 10% lower surface area for the heat transfer. Comparing the 150-degree and 60-degree included angle, the latter showed better combustion efficiency, regardless of the fuel combination, due to its earlier combustion phasing (at constant SOI timing) as the fuel spray targets better region of the cylinder.

2018 ◽  
Vol 21 (8) ◽  
pp. 1426-1440 ◽  
Author(s):  
Buyu Wang ◽  
Michael Pamminger ◽  
Ryan Vojtech ◽  
Thomas Wallner

Gasoline compression ignition using a single gasoline-type fuel for direct/port injection has been shown as a method to achieve low-temperature combustion with low engine-out NOx and soot emissions and high indicated thermal efficiency. However, key technical barriers to achieving low-temperature combustion on multi-cylinder engines include the air handling system (limited amount of exhaust gas recirculation) as well as mechanical engine limitations (e.g. peak pressure rise rate). In light of these limitations, high-temperature combustion with reduced amounts of exhaust gas recirculation appears more practical. Furthermore, for high-temperature gasoline compression ignition, an effective aftertreatment system allows high thermal efficiency with low tailpipe-out emissions. In this work, experimental testing was conducted on a 12.4 L multi-cylinder heavy-duty diesel engine operating with high-temperature gasoline compression ignition combustion with port and direct injection. Engine testing was conducted at an engine speed of 1038 r/min and brake mean effective pressure of 1.4 MPa for three injection strategies, late pilot injection, early pilot injection, and port/direct fuel injection. The impact on engine performance and emissions with respect to varying the combustion phasing were quantified within this study. At the same combustion phasing, early pilot injection and port/direct fuel injection had an earlier start of combustion and higher maximum pressure rise rates than late pilot injection attributable to more premixed fuel from pilot or port injection; however, brake thermal efficiencies were higher with late pilot injection due to reduced heat transfer. Early pilot injection also exhibited the highest cylinder-to-cylinder variations due to differences in injector behavior as well as the spray/wall interactions affecting mixing and evaporation process. Overall, peak brake thermal efficiency of 46.1% and 46% for late pilot injection and port/direct fuel injection was achieved comparable to diesel baseline (45.9%), while early pilot injection showed the lowest brake thermal efficiency (45.3%).


Author(s):  
Lorenzo Bartolucci ◽  
Stefano Cordiner ◽  
Vincenzo Mulone ◽  
Sundar R. Krishnan ◽  
Kalyan K. Srinivasan

Abstract Dual fuel diesel-methane low temperature combustion (LTC) has been investigated by various research groups, showing high potential for emissions reduction (especially oxides of nitrogen (NOx) and particulate matter (PM)) without adversely affecting fuel conversion efficiency in comparison with conventional diesel combustion. However, when operated at low load conditions, dual fuel LTC typically exhibit poor combustion efficiencies. This behavior is mainly due to low bulk gas temperatures under lean conditions, resulting in unacceptably high carbon monoxide (CO) and unburned hydrocarbon (UHC) emissions. A feasible and rather innovative solution may be to split the pilot injection of liquid fuel into two injection pulses, with the second pilot injection supporting the methane combustion once the process is initiated by the first one. In this work, diesel-methane dual fuel LTC is investigated numerically in a single-cylinder heavy-duty engine operating at 5 bar brake mean effective pressure (BMEP) at 85% and 75% percentage of energy substitution (PES) by methane (taken as a natural gas surrogate). A multidimensional model is first validated in comparison with experimental data obtained on the same single-cylinder engine for early single pilot diesel injection at 310 CAD and 500 bar rail pressure. With the single pilot injection case as baseline, the effects of multiple pilot injections and different rail pressures on combustion emissions are investigated, again showing good agreement with experimental data. Apparent heat release rate and cylinder pressure histories as well as combustion efficiency trends are correctly captured by the numerical model. Results prove that higher rail pressures yield reductions of HC and CO by 90% and 75%, respectively, at the expense of NOx emissions, which increase by ∼30% from baseline. Furthermore, it is shown that post-injection during the expansion stroke does not support the stable development of the combustion front as the combustion process is confined close to the diesel spray core.


2016 ◽  
Vol 138 (9) ◽  
Author(s):  
Jing Li ◽  
Wenming Yang ◽  
Hui An ◽  
Dezhi Zhou ◽  
Markus Kraft

In this study, dynamic ϕ–T map analysis was applied to a reactivity controlled compression ignition (RCCI) engine fueled with natural gas (NG) and diesel. The combustion process of the engine was simulated by coupled kiva4-chemkin with a diesel oil surrogate (DOS) chemical mechanism. The ϕ–T maps were constructed by the mole fractions of soot and NO obtained from senkin and ϕ–T conditions from engine simulations. Five parameters, namely, NG fraction, first start of injection (SOI) timing, second SOI timing, second injection duration, and exhaust gas recirculation (EGR) rate, were varied in certain ranges individually, and the ϕ–T maps were compared and analyzed under various conditions. The results revealed how the five parameters would shift the ϕ–T conditions and influence the soot–NO contour. Among the factors, EGR rate could limit the highest temperature due to its dilute effect, hence maintaining RCCI combustion within low-temperature combustion (LTC) region. The second significant parameter is the premixed NG fraction. It could set the lowest temperature; moreover, the tendency of soot formation can be mitigated due to the lessened fuel impingement and the absence of C–C bond. Finally, the region of RCCI combustion was added to the commonly known ϕ–T map diagram.


Author(s):  
Usman Asad ◽  
Ming Zheng

High hydrocarbon levels in the exhaust, increased cycle-to-cycle variation and reduced energy-efficiency are typical problems associated with diesel LTC operation. To overcome these challenges, three different fuel injection strategies (late single-injection, early multiple-injections and split-injections) have been investigated on a modified single cylinder common-rail diesel engine. The effects of EGR, boost and injection pressure on the emissions and combustion efficiency have been analyzed. The effect of heavy EGR has been quantified in terms of a trade-off between the combustion phasing and the combustion efficiency. To minimize fuel condensation and wall-wetting with early injections, a criterion for selecting the earliest timing for injection during the compression stroke has also been evaluated. This research is concluded with the formulation of a load management strategy to enable energy-efficient diesel LTC up to 10 bar IMEP.


2008 ◽  
Vol 1 (1) ◽  
pp. 1057-1082 ◽  
Author(s):  
Glen C. Martin ◽  
Charles J. Mueller ◽  
David M. Milam ◽  
Michael S. Radovanovic ◽  
Christopher R. Gehrke

2016 ◽  
Vol 18 (4) ◽  
pp. 351-365 ◽  
Author(s):  
Martin Wissink ◽  
Rolf Reitz

Low-temperature combustion offers an attractive combination of high thermal efficiency and low NO x and soot formation at moderate engine load. However, the kinetically-controlled nature of low-temperature combustion yields little authority over the rate of heat release, resulting in a tradeoff between load, noise, and thermal efficiency. While several single-fuel strategies have achieved full-load operation through the use of equivalence ratio stratification, they uniformly require retarded combustion phasing to maintain reasonable noise levels, which comes at the expense of thermal efficiency and combustion stability. Previous work has shown that control over heat release can be greatly improved by combining reactivity stratification in the premixed charge with a diffusion-limited injection that occurs after low-temperature heat release, in a strategy called direct dual fuel stratification. While the previous work has shown how the heat release control offered by direct dual fuel stratification differs from other strategies and how it is enabled by the reactivity stratification created by using two fuels, this paper investigates the effects of the diffusion-limited injection. In particular, the influence of fuel selection and the pressure, timing, and duration of the diffusion-limited injection are examined. Diffusion-limited injection fuel type had a large impact on soot formation, but no appreciable effect on performance or other emissions. Increasing injection pressure was observed to decrease filter smoke number exponentially while improving combustion efficiency. The timing and duration of the diffusion-limited injection offered precise control over the heat release event, but the operating space was limited by a tradeoff between NO x and soot.


2014 ◽  
Vol 16 (6) ◽  
pp. 1057-1065

<div> <p>A set of experiments have been carried out in a heavy duty single cylinder engine using high <em>EGR</em> rates and different start of injection angles (<em>SOI</em>). Three different fuels (conventional diesel fuel, a diesel-ethanol mixture (e-diesel) and a Fischer-Tropsch fuel (GTL)) have been tested in order to evaluate their potential to achieve Low Temperature Combustion (LTC) conditions. Diesel and e-diesel have shown poor repeatability for the most delayed angle (4 deg aTDC) due to significant cycle-to-cycle variations. GTL has shown a heat release rate pattern typical of conventional diesel combustion for all the <em>SOI</em> values, while diesel and e-diesel show fully premixed combustion for delayed <em>SOI </em>(from 4 deg bTDC). A delay of <em>SOI</em> causes a decrease in the brake thermal efficiency and an increase in THC and CO emissions, the latter being more important when e-diesel is used. While late injection seems to considerably improve NOx emissions, no benefits have been obtained for diesel particles, maybe due to the low engine torque tested (which causes the soot production rate to be more significant than the oxidation rate). The low autoignition tendency together with the high volatility of ethanol makes e-diesel as a promising fuel to achieve LTC conditions while keeping acceptable fuel consumption and CO/THC emissions.</p> </div> <p>&nbsp;</p>


Author(s):  
Jae Hyung Lim ◽  
Rolf D. Reitz

In the present study a chamfered piston crown design was used in order to reduce unburned hydrocarbon (UHC) emissions from the ring-pack crevice. Compared to the conventional piston design, the chamfered piston showed 17%∼41% reduction in the crevice-borne UHC emissions in homogeneous charge compression ignition (HCCI) combustion. Through parametric sweeps 6 mm was identified to be a suitable chamfer size and the mechanism of the UHC reduction was revealed. Based on the findings in this study, the chamfered piston design was also tested in dual-fuel reactivity controlled compression ignition (RCCI) combustion. In the tested RCCI case using the chamfered piston the UHC and CO emissions were reduced by 79% and 36%, respectively, achieving 99.5% combustion efficiency. This also improved gross indicated thermal efficiency from 51.1% to 51.8% in a 9 bar IMEP RCCI combustion case.


Author(s):  
Jae Hyung Lim ◽  
Rolf D. Reitz

In the present study, a chamfered piston crown design was used in order to reduce unburned hydrocarbon (UHC) emissions from the ring-pack crevice. Compared to the conventional piston design, the chamfered piston showed 17–41% reduction in the crevice-borne UHC emissions in homogeneous charge compression ignition (HCCI) combustion. Through parametric sweeps 6 mm was identified to be a suitable chamfer size and the mechanism of the UHC reduction was revealed. Based on the findings in this study, the chamfered piston design was also tested in dual-fuel reactivity controlled compression ignition (RCCI) combustion. In the tested RCCI case using the chamfered piston the UHC and CO emissions were reduced by 79% and 36%, respectively, achieving 99.5% combustion efficiency. This also improved gross indicated thermal efficiency (gITE) from 51.1% to 51.8% in a 9 bar indicated mean effective pressure (IMEP) RCCI combustion case.


2020 ◽  
Vol 143 (2) ◽  
Author(s):  
Lorenzo Bartolucci ◽  
Stefano Cordiner ◽  
Vincenzo Mulone ◽  
Sundar R. Krishnan ◽  
Kalyan K. Srinivasan

Abstract Dual-fuel diesel–methane low-temperature combustion (LTC) has been investigated by various research groups, showing high potential for emissions reduction (especially oxides of nitrogen oxide (NOx) and particulate matter (PM)) without adversely affecting fuel conversion efficiency in comparison with conventional diesel combustion. However, when operated at low load conditions, dual-fuel LTC typically exhibits poor combustion efficiencies. This behavior is mainly due to low bulk gas temperatures under lean conditions, resulting in unacceptably high carbon monoxide (CO) and unburned hydrocarbon (UHC) emissions. A feasible and rather innovative solution may be to split the pilot injection of liquid fuel into two injection pulses, with the second pilot injection supporting CO and UHC oxidation once combustion is initiated by the first one. In this study, diesel–methane dual-fuel LTC is investigated numerically in a single-cylinder heavy-duty engine operating at 5 bar brake mean effective pressure (BMEP) at 85% and 75% percentage of energy substitution (PES) by methane (taken as a natural gas (NG) surrogate). A multidimensional model is first validated in comparison with the experimental data obtained on the same single-cylinder engine for early single pilot diesel injection at 310 crank angle degrees (CAD) and 500 bar rail pressure. With the single pilot injection case as baseline, the effects of multiple pilot injections and different rail pressures on combustion and emissions are investigated, again showing good agreement with the experimental data. Apparent heat release rate and cylinder pressure histories as well as combustion efficiency trends are correctly captured by the numerical model. Results prove that higher rail pressures yield reductions of HC and CO by 90% and 75%, respectively, at the expense of NOx emissions, which increase by ∼30% from baseline still remaining at very low level (under 1 g/kWh). Furthermore, it is shown that postinjection during the expansion stroke does not support the stable development of the combustion front as the combustion process is confined close to the diesel spray core.


Sign in / Sign up

Export Citation Format

Share Document