Application of Planar Laser Rayleigh Scattering for Measurement of Gas Temperature Distributions in Effusion Jet Cooled Panels Exposed to High Temperatures

2021 ◽  
Author(s):  
Gregory Grasso ◽  
Kevin Snyder ◽  
Baki Cetegen

Abstract This experimental study examines the use of planar laser Rayleigh scattering to measure instantaneous gas temperature distributions at different heights above the surface of an effusion cooled plate. An experimental test rig was used to model combustor conditions with a bulk crossflow temperature of 1500 K. Carbon dioxide was used as coolant at multiple blowing ratios ranging from 1.12 to 11.1. A "temperature-pegging" methodology was used to process Rayleigh light scattering images to create high resolution and accurate temperature images at heights of 2, 2.75, and 3.5 mm above the surface of a prototypical effusion plate. Measured temperature distributions were used to calculate root mean square (RMS) distributions, and were also converted to film effectiveness maps based on the upstream crossflow gas and effusion coolant temperatures. It is found that film cooling region spreads upstream with increasing effusion jet blowing ratio parameter. The root mean square (RMS) deviation of gas temperatures over each measurement plane show that the RMS fluctuations are low inside and outside the effusion film, but are high near the film edge. At a given height above the effusion panel, the RMS fluctuations decrease in the film region with increasing blowing ratio. Film effectiveness follows similar trends with high film effectiveness region expanding with increasing effusion jet blowing ratios.

Author(s):  
Xianchang Li ◽  
Ting Wang

Cooling of gas turbine hot section components such as combustor liners, combustor transition pieces, turbine vanes (nozzles) and blades (buckets) is a critical task for improving the life and reliability of hot-section components. Conventional cooling techniques using air-film cooling, impingement jet cooling, and turbulators have significantly contributed to cooling enhancements in the past. However, the increased net benefits that can be continuously harnessed by using these conventional cooling techniques seem to be incremental and are about to approach their limit. Therefore, new cooling techniques are essential for surpassing these current limits. This paper investigates the potential of film cooling enhancement by injecting mist into the coolant. The computational results show that a small amount of injection (2% of the coolant flow rate) can enhance the cooling effectiveness about 30% ∼ 50%. The cooling enhancement takes place more strongly in the downstream region, where the single-phase film cooling becomes less powerful. Three different holes are used in this study including a 2-D slot, a round hole, and a fan-shaped diffusion hole. A comprehensive study is performed on the effect of flue gas temperature, blowing angle, blowing ratio, mist injection rate, and droplet size on the cooling effectiveness with 2-D cases. Analysis on droplet history (trajectory and size) is undertaken to interpret the mechanism of droplet dynamics.


Author(s):  
H. J. Seo ◽  
J. S. Lee ◽  
P. M. Ligrani

Bulk flow pulsations in the form of sinusoidal variations of velocity and static pressure at injectant Strouhal numbers from 0.8 to 10.0 are investigated as they affect film cooling from a single row of simple angle holes. Similar flow variations are produced by potential flow interactions and passing shock waves near turbine surfaces in gas turbine engines. Time-averaged temperature distributions, phase-averaged temperature distributions, adiabatic film cooling effectiveness values, and iso-energetic Stanton numbers show that important alterations to film cooling protection occur as pulsation frequency, coolant Strouhal number, blowing ratio, and non-dimensional injection hole length are changed. Overall, the pulsations affect film performance end behavior more significantly both as L/D decreases, and as blowing ratio decreases.


1999 ◽  
Vol 121 (3) ◽  
pp. 542-550 ◽  
Author(s):  
H. J. Seo ◽  
J. S. Lee ◽  
P. M. Ligrani

Bulk flow pulsations in the form of sinusoidal variations of velocity and static pressure at injectant Strouhal numbers from 0.8 to 10.0 are investigated as they affect film cooling from a single row of simple angle holes. Similar flow variations are produced by potential flow interactions and passing shock waves near turbine surfaces in gas turbine engines. Time-averaged temperature distributions, phase-averaged temperature distributions, adiabatic film cooling effectiveness values, and iso-energetic Stanton numbers show that important alterations to film cooling protection occur as pulsation frequency, coolant Strouhal number, blowing ratio, and nondimensional injection hole length are changed. Overall, the pulsations affect film performance and behavior more significantly both as L/D decreases, and as blowing ratio decreases.


Author(s):  
Johannes M. F. Peter ◽  
Markus J. Kloker

Abstract High-order direct numerical simulations of film cooling by tangentially blowing cool helium at supersonic speeds into a hot turbulent boundary-layer flow of steam (gaseous H2O) at a free stream Mach number of 3.3 are presented. The stagnation temperature of the hot gas is much larger than that of the coolant flow, which is injected from a vertical slot of height s in a backward-facing step. The influence of the coolant mass flow rate is investigated by varying the blowing ratio F or the injection height s at kept cooling-gas temperature and Mach number. A variation of the coolant Mach number shows no significant influence. In the canonical baseline cases all walls are treated as adiabatic, and the investigation of a strongly cooled wall up to the blowing position, resembling regenerative wall cooling present in a rocket engine, shows a strong influence on the flow field. No significant influence of the lip thickness on the cooling performance is found. Cooling correlations are examined, and a cooling-effectiveness comparison between tangential and wall-normal blowing is performed.


2015 ◽  
Vol 3 (2) ◽  
pp. 15-27
Author(s):  
Ahmed A. Imram ◽  
Humam K. Jalghef ◽  
Falah F. Hatem

     The effect of introducing ramp with a cylindrical slot hole on the film cooling effectiveness has been investigated experimentally and numerically. The film cooling effectiveness measurements are obtained experimentally. A test study was performed at a single mainstream with Reynolds number 76600 at three different coolant to mainstream blowing ratios 1.5, 2, and 3. Numerical simulation is introduced to primarily estimate the best ramp configurations and to predict the behavior of the transport phenomena in the region linked closely to the interaction between the coolant air injection and the hot air mainstram flow. The results showed that using ramps with trench cylindrical holes would enhanced the overall film cooling effectiveness by 83.33% compared with baseline model at blowing ratio of 1.5, also  the best overall flim cooling effectevness was obtained at blowing ratio of 2 while it is reduced at blowing ratio of 3.


2016 ◽  
Vol 26 (1) ◽  
pp. 58
Author(s):  
Qiurong XIE ◽  
Zheng JIANG ◽  
Qinglu LUO ◽  
Jie LIANG ◽  
Xiaoling WANG ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document