Assessment of Renewable Natural Gas Refuelling Stations for Heavy-Duty Vehicles

2021 ◽  
pp. 1-43
Author(s):  
Wahiba Yaïci ◽  
Longo Michela

Abstract With environmental concerns and limited natural resources, there is a need for cleaner resources of energy in the transportation sector. Renewable natural gas (RNG) is being considered as a potential fuel for heavy-duty applications due to its comparable usage to diesel and gasoline in vehicles. The idea of compressed RNG vehicles is being proposed especially because it will significantly reduce harmful emissions into the environment. This study examines the feasibility of implementing a nationwide network of compressed RNG refueling infrastructure in order to accommodate a conversion of long-haul, heavy-duty (LHHD) truck fleet from diesel fuel to RNG. Two methods, Constant Traffic and Variable Traffic, along with data about compressed RNG infrastructure and vehicles, were developed and used to predict fuelling requirements for LHHD truck fleet. Then, a detailed economic analysis was conducted on various test cases to estimate how different variables impact the final selling price of RNG. This provided insight with the understanding of what factors go into pricing RNG and if it can compete against diesel in the trucking market. Results disclosed that the cost to purchase RNG is the greatest factor in the final selling price of compressed RNG. Due to the variability in RNG production however, there is no precise cost, which makes predictions challenging. However, results revealed that it is possible for compressed RNG to be competitive with diesel, with the mean compressed RNG price being 16.5% cheaper than diesel, before being taxed. Future studies should focus on the feasibility of the production of RNG and the associated costs. An in-depth analysis on operational and maintenance costs for compressed RNG refuelling stations may also provide predictions that are more accurate. The methodology developed in this feasibility analysis may serve as a useful tool for future techno-economics of RNG refuelling stations for other types of ICE fleets or those powered with alternative green fuels.

Author(s):  
Wahiba Yaïci ◽  
Michela Longo

Abstract With environmental concerns and limited natural resources, there is a need for cleaner sources of energy in the transportation sector. Renewable natural gas (RNG) is being considered as a potential fuel for heavy-duty applications due to its comparable usage to diesel and gasoline in vehicles. The idea of compressed RNG vehicles is being proposed especially because it will potentially significantly reduce harmful emissions into the environment. This initiative is taken in order to decrease vehicle emissions and support Canada’s commitments to the climate plans reinforcing active transportation infrastructure, in concert with new transit infrastructure, and zero emission vehicles. This study examines the feasibility of implementing a nationwide network of compressed RNG refuelling infrastructure in order to accommodate a conversion of Canada’s long-haul, heavy-duty truck fleet from diesel fuel to RNG. Two methods, Constant Traffic and Variable Traffic, along with data about compressed RNG infrastructure and vehicles, were developed and used to predict fuelling requirements for Canada’s long-haul, heavy-duty truck fleet. Then, a detailed economic analysis was conducted on various test cases to estimate how different variables impact the final selling price of RNG. This provided insight with the understanding of what factors go into pricing RNG and if it can compete against diesel in the trucking market. Results disclosed that the cost to purchase RNG is the greatest factor in the final selling price of compressed RNG. Due to the variability in RNG production however, there is no precise cost, which makes predictions difficult. However, results revealed that it is possible for compressed RNG to be competitive with diesel, with the mean compressed RNG price being 16.5% cheaper than diesel, before being taxed. Future studies should focus on the feasibility of the production of RNG and the associated costs, with emphasis on the Canadian landscape. An in-depth analysis on operational and maintenance costs for compressed RNG refuelling stations may also provide predictions that are more accurate.


Author(s):  
Wahiba Yaïci ◽  
Michela Longo

Abstract In view of serious environmental problems occurring around the world and in particular climate change caused significantly by dangerous CO2 emissions into the biosphere in the developmental process, it has become imperative to identify alternative and cleaner sources of energy. It is now indisputable that there cannot be sustained development or meaningful growth without a commitment to preserve the environment. Compressed hydrogen is being considered as a potential fuel for heavy-duty applications because it will possibly substantially reduce toxic greenhouse gas emissions. The cost of hydrogen will be a main element in the acceptance of compressed hydrogen internal combustion vehicles in the marketplace since of its effect on the levelized cost of driving. The cost of hydrogen at the pump is determined by its production cost, which is mainly a function of the feedstock and process utilised, the distribution cost and the refuelling station cost. This paper investigates the feasibility of implementing a nationwide network of hydrogen refuelling infrastructure in order to accommodate a conversion of Canada’s long-haul, heavy-duty truck fleet from diesel fuel to hydrogen. This initiative is taken in order to reduce vehicle emissions and support Canada’s commitments to the climate plans supporting active transportation infrastructure, together with new transit infrastructure, and zero emission vehicles. Two methods, Constant Traffic and Variable Traffic, along with data about hydrogen infrastructure and vehicles, were developed to estimate fuelling requirements for Canada’s long-haul, heavy-duty truck fleet. Furthermore, a thorough economic study was conducted on various test cases to evaluate how diverse variables affects the final selling price of hydrogen. This provided insight with the understanding of what factors go into pricing hydrogen and if it can compete against diesel in the trucking market. Results revealed that the cost to purchase hydrogen is the greatest factor in the pump price of hydrogen. Due to the variability in hydrogen production, however, there is no precise cost, which makes predictions difficult. Moreover, it was found that the pump price of hydrogen is, on average, 239% more expensive than diesel fuel. Future work should concentrate on the costs and logistics of high-capacity hydrogen refuelling stations, which is required to deliver fuel to a fleet of long-haul, heavy-duty trucks. A breakdown of hydrogen production costs, with regard to the Canadian landscape and the requirements of a long-haul, heavy-duty truck fleet, may possibly give further accurate predictions of those made in this study.


2021 ◽  
pp. 1-48
Author(s):  
Wahiba Yaïci ◽  
Longo Michela

Abstract In view of serious environmental problems occurring around the world and in particular climate change caused significantly by dangerous CO2 emissions into the biosphere in the developmental process, it has become imperative to identify alternative and cleaner sources of energy. Compressed hydrogen is being considered as a potential fuel for heavy-duty applications because it will substantially reduce toxic greenhouse gas emissions and other pollutant emissions. The cost of hydrogen will be a main element in the acceptance of compressed hydrogen internal combustion engine (ICE) vehicles in the marketplace since of its effect on the levelized cost of driving. This paper investigates the feasibility of developing a nationwide network of hydrogen refuelling infrastructure with the aim to assist for a conversion of long-haul, heavy-duty (LHHD) truck fleet from diesel fuel to hydrogen. This initiative is taken in order to reduce vehicle emissions and support commitments to the climate plans reinforcing active transportation infrastructure together with new transit infrastructure and zero emission vehicles.Two methods based on constant and variable traffics, using data about hydrogen infrastructure and ICE vehicles, were created to estimate fuelling conditions for LHHD truck fleet. Furthermore, a thorough economic study was carried out on several test cases to evaluate how diverse variables affect the final selling price of hydrogen. This gave understanding of what elements go into pricing of hydrogen and if it can compete with diesel in the trucking market. Results revealed that the cost to purchase green hydrogen is the utmost part in the pump price of hydrogen. Due to the variety in hydrogen production, there is no defined cost, which renders estimates difficult. Moreover, it was found that the pump price of green hydrogen is on average 239% more expensive than diesel fuel. The methodology proposed and models created in this feasibility study may serve as a valuable tool for future techno-economics of hydrogen refuelling stations for other types of ICE fleets or fuel cell vehicles.


2017 ◽  
Vol 67 (12) ◽  
pp. 1328-1341 ◽  
Author(s):  
Nigel N. Clark ◽  
Derek R. Johnson ◽  
David L. McKain ◽  
W. Scott Wayne ◽  
Hailin Li ◽  
...  

2021 ◽  
Author(s):  
Kenedy Aliila Greyson

Energy consumption and its environmental impact are now among the most challenging problems in most developing cities. The common sources of energy used as the fuel in transportation sector include gasoline, diesel, natural gas, propane, biofuels, electricity, coal, and hydrogen. However, in Tanzania, diesel and gasoline are still the dominant source of energy used by public and private vehicles. We have experienced significant efforts of converting conventional vehicles (gasoline engines) to operate on Compressed Natural Gas (CNG) or on hybrid system (gasoline and natural gas) as an alternative source of energy in Tanzania. The CNG is considered as cleaner combustion energy used as a vehicular fuel alternative to gasoline or diesel. In this chapter, the amount of energy consumption from the fuel combustion, the impact of environmental health (toxicity gas emission), the cost of fuel used by the transit buses in terms of fuel energy consumption, and driving profile are discussed. The scope of this work is based on the total energy contained in the fuel only. The ability of the engine to transform the available energy from the fuel into useful work power (efficiency) is left to the designers and manufacturers.


Author(s):  
Wahiba Yaïci ◽  
Hajo Ribberink

Abstract Concerns about environmental degradation and finite natural resources necessitate cleaner sources of energy for use in the transportation sector. In Canada, natural gas is currently being appraised as a potential alternative fuel for use in vehicles for both medium and heavy-duty use due to its relatively lower costs compared to that of conventional fuels. The idea of compressed natural gas vehicles (CNGVs) is being mooted as inexpensive for fleet owners and especially because it will potentially significantly reduce harmful emissions into the environment. A short feasibility study was conducted to ascertain the potential for reduced emissions and savings opportunities presented by CNGVs in both medium and heavy-duty vehicles. The study which is discussed in the present paper was carried out on long-haul trucking and refuse trucks respectively. Emphasis was laid on individual vehicle operating economics and emissions reduction, and the identification of practical considerations for both the individual application and CNGVs as a whole. A financial analysis of the annual cost savings that is achievable when an individual diesel vehicle is replaced with a CNG vehicle was also presented. This paper drew substantial references from published case studies for relevant data on maintenance costs, fuel economy, range, and annual distance travelled. It relied on a summary report from Argonne National Laboratory’s GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) [1] for its discussion on relative fuel efficiency penalties for heavy-duty CNGVs. The fuel cost figures were mostly drawn from motor fuel data of the Ontario Ministry of Transportation, since the Ministry is one of the few available sources of compressed natural gas fuel prices. Finally, the GHGenius life-cycle analysis tool [2] was employed to determine fuel-cycle emissions in Canada for comparison purposes. The study produced remarkable findings. Results showed that compared to diesel-fuelled vehicles, emissions in CNG heavy-and-medium-duty vehicles reduced by up to 8.7% (for well-to-pump) and 11.5% (for pump-to-wheels) respectively. Overall, the most beneficial use/application appeared to be long-haul trucking based on the long distances covered and higher fuel economy achieved (derived from economies of scale), while refuse trucks appeared to have relatively marginal annual savings. However, these annual savings are actually a conservative estimate which will ultimately be modified/determined by a number of factors that are likely to be predisposed in favour of natural gas vehicles. Significantly, the prospect of using renewable natural gas as fuel was found to be a factor for improving the value proposition of refuse trucks in particular, certainly from an emissions standpoint with a reduction of up to 100%, but speculatively from operational savings as well.


Author(s):  
Hongsheng Guo ◽  
Brian Liko ◽  
Jennifer Littlejohns

Abstract The Paris agreement is exerting pressure on industries that generate significant greenhouse gas (GHG) emissions, such as transportation. Electrification can help reduce GHG emissions from light duty vehicles, but it is unfeasible for heavy duty vehicles that are predominately powered by diesel engines. Fuel switching from diesel to low carbon fuels is a more practical way helping reduce GHG emissions from heavy duty vehicles. Natural gas and renewable natural gas are low carbon or renewable fuels that generate much less carbon dioxide (CO2) emissions than diesel during combustion. Natural gas/renewable natural gas – diesel dual fuel combustion is an efficient way to replace diesel by natural gas/renewable natural gas in heavy duty diesel engines. This paper reports an experimental investigation on combustion and GHG emissions of a heavy duty natural gas – diesel dual fuel engine at different load/speed conditions. The variation in the effect of natural gas fraction on engine performance with changing engine load was compared and analyzed. Nitrous oxide (N2O), nitrogen oxides (NOx), methane (CH4) and CO2 emissions were experimentally investigated and analyzed. The results revealed that the effect of natural gas fraction on engine performance changed with varying engine load and speed condition. N2O emissions from a dual fuel engine changed with increasing natural gas fraction, but the effect of N2O emissions on overall GHG emissions was not significant. However, CH4 emissions contributed significantly to the overall GHG emissions in a dual fuel engine, especially at low load conditions.


Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2004
Author(s):  
Aakash Dev ◽  
Timo C. Dilly ◽  
Amin E. Bakhshipour ◽  
Ulrich Dittmer ◽  
S. Murty Bhallamudi

A transition from conventional centralized to hybrid decentralized systems has been increasingly advised recently due to their capability to enhance the resilience and sustainability of urban water supply systems. Reusing treated wastewater for non-potable purposes is a promising opportunity toward the aforementioned resolutions. In this study, we present two optimization models for integrating reusing systems into existing sewerage systems to bridge the supply–demand gap in an existing water supply system. In Model-1, the supply–demand gap is bridged by introducing on-site graywater treatment and reuse, and in Model-2, the gap is bridged by decentralized wastewater treatment and reuse. The applicability of the proposed models is evaluated using two test cases: one a proof-of-concept hypothetical network and the other a near realistic network based on the sewerage network in Chennai, India. The results show that the proposed models outperform the existing approaches by achieving more than a 20% reduction in the cost of procuring water and more than a 36% reduction in the demand for freshwater through the implementation of local on-site graywater reuse for both test cases. These numbers are about 12% and 34% respectively for the implementation of decentralized wastewater treatment and reuse.


2021 ◽  
Vol 13 (4) ◽  
pp. 1618
Author(s):  
Anneliese Dyer ◽  
Amelia Christine Miller ◽  
Brianna Chandra ◽  
Juan Galindo Maza ◽  
Carley Tran ◽  
...  

With traditional natural gas being one of the top options for heating in the United States and the present threat of climate change, there is a demand for an alternative clean fuel source. A Renewable Natural Gas Implementation Decision-Making Conceptual Model was created to provide a framework for considering the feasibility of renewable natural gas (RNG) projects and applied to New Jersey, specifically investigating landfills and wastewater treatment plants (WWTPs). Data from the US EPA’s Landfill Methane Outreach Program and New Jersey’s Department of Environmental Protection Sewage Sludge databases were used to identify seven landfills and 22 WWTPs as possible locations for RNG projects. Landfills were found to have a higher potential for producing RNG, on average potentially producing enough RNG to heat 12,792 homes per year versus 1227 for the average WWTP. Additionally, landfills, while having higher capital expenses, have lower projected payback periods, averaging 5.19 years compared to WWTP’s 11.78 years. WWTPs, however, generally are located closer to existing natural gas pipelines than landfills and when they produce more than 362 million standard cubic feet per year (MMSCFY) of biogas are financially feasible. RNG projects at Monmouth County Reclamation Center, Ocean County Landfill, and Passaic Valley Sewerage Commission WWTP show the greatest potential. Greenhouse gas emission reductions from RNG projects at these facilities utilizing all available biogas would be 1.628 million metric tons CO2 equivalents per year, synonymous to removing over 351,000 passenger vehicles from the road each year. In addition, expanding federal and state incentives to encompass RNG as a heating fuel is necessary to reduce financial barriers to RNG projects throughout the US. Overall, this paper supports the hypothesized conceptual model in examining the feasibility of RNG projects through examples from New Jersey and confirms the potential for RNG production utilizing existing waste streams.


Sign in / Sign up

Export Citation Format

Share Document