Characteristics of the Wave Slamming Forces on Jacket Structures Under Plunging Breaking Waves Based on Experimental Data

Author(s):  
Jithin Jose ◽  
Olga Podrażka ◽  
Ove Tobias Gudmestad ◽  
Witold Cieślikiewicz

Due to increased energy demand and thrive for clean energy, offshore wind energy has become popular these days. A large number of offshore wind turbines supported by fixed type substructures have been installed, among which jacket structures are getting popular in recent times. The forces from breaking waves are a major concern in the design of offshore structures installed in shallow waters. However, there are only limited studies available regarding breaking wave forces on jacket structures and still there exist many uncertainties in this area. During the WaveSlam experiment carried out in 2013, a jacket structure of 1:8 scale was tested on a large number of breaking wave conditions. Wave properties and the forces on the structure were measured during the experiment. The total wave slamming forces are being filtered from the experimental measured force using the Empirical Mode Decomposition method and local slamming forces are obtained by the Frequency Response Function method. Based on these results, the peak slamming force and slamming coefficients on the jacket members are estimated. The wave parameters (wave height and period) and wave front asymmetry are obtained from measured wave properties. The variation of slamming forces and slamming coefficients with respect to these parameters are also investigated.

2017 ◽  
Vol 140 (2) ◽  
Author(s):  
Jithin Jose ◽  
Olga Podrażka ◽  
Ove Tobias Gudmestad ◽  
Witold Cieślikiewicz

Wave breaking is one of the major concerns for offshore structures installed in shallow waters. Impulsive breaking wave forces sometimes govern the design of such structures, particularly in areas with a sloping sea bottom. Most of the existing offshore wind turbines were installed in shallow water regions. Among fixed-type support structures for offshore wind turbines, jacket structures have become popular in recent times as the water depth for fixed offshore wind structures increases. However, there are many uncertainties in estimating breaking wave forces on a jacket structure, as only a limited number of past studies have estimated these forces. Present study is based on the WaveSlam experiment carried out in 2013, in which a jacket structure of 1:8 scale was tested for several breaking wave conditions. The total and local wave slamming forces are obtained from the experimental measured forces, using two different filtering methods. The total wave slamming forces are filtered from the measured forces using the empirical mode decomposition (EMD) method, and local slamming forces are obtained by the frequency response function (FRF) method. From these results, the peak slamming forces and slamming coefficients on the jacket members are estimated. The breaking wave forces are found to be dependent on various breaking wave parameters such as breaking wave height, wave period, wave front asymmetry, and wave-breaking positions. These wave parameters are estimated from the wave gauge measurements taken during the experiment. The dependency of the wave slamming forces on these estimated wave parameters is also investigated.


2019 ◽  
Author(s):  
Ankit Aggarwal ◽  
Tobias Martin ◽  
Seimur Shirinov ◽  
Hans Bihs ◽  
Arun Kamath

Abstract The interest towards offshore wind energy has grown manifolds in the last few decades. Jacket structures are one of the most widely used substructures in the offshore wind turbine installations for intermediate water depths. Offshore structures are exposed to breaking waves. The interaction of breaking waves with the jackets is quite complicated due to the multiple vertical, horizontal and diagonal members. In the present study, a numerical investigation of the wave hydrodynamics and wave forces exerted by regular breaking waves on a jacket is performed. The open-source CFD code REEF3D is used for this purpose, which raises the possibility to model the breaking process physically. The conducted model-scale laboratory experiments have been performed in the past such that a direct comparison is presented.


2021 ◽  
Vol 9 (5) ◽  
pp. 520
Author(s):  
Zhenyu Liu ◽  
Zhen Guo ◽  
Yuzhe Dou ◽  
Fanyu Zeng

Most offshore wind turbines are installed in shallow water and exposed to breaking waves. Previous numerical studies focusing on breaking wave forces generally ignored the seabed permeability. In this paper, a numerical model based on Volume-Averaged Reynolds Averaged Navier–Stokes equations (VARANS) is employed to reveal the process of a solitary wave interacting with a rigid pile over a permeable slope. Through applying the Forchheimer saturated drag equation, effects of seabed permeability on fluid motions are simulated. The reliability of the present model is verified by comparisons between experimentally obtained data and the numerical results. Further, 190 cases are simulated and the effects of different parameters on breaking wave forces on the pile are studied systematically. Results indicate that over a permeable seabed, the maximum breaking wave forces can occur not only when waves break just before the pile, but also when a “secondary wave wall” slams against the pile, after wave breaking. With the initial wave height increasing, breaking wave forces will increase, but the growth can decrease as the slope angle and permeability increase. For inclined piles around the wave breaking point, the maximum breaking wave force usually occurs with an inclination angle of α = −22.5° or 0°.


Author(s):  
Spencer Hallowell ◽  
Sanjay Arwade ◽  
Chi Qiao ◽  
Andrew Myers ◽  
Weichiang Pang

Abstract As offshore wind development is in its infancy along the U.S. Atlantic Coast challenges arise due to the effects of strong storms such as hurricanes. Breaking waves on offshore structures induced by hurricanes, are of particular concern to offshore structures due to high magnitude impulse loads caused by wave slamming. Prediction of breaking wave hazards are important in offshore design for load cases using long mean return periods of environmental conditions. A Breaking Wave Hazard Estimation Model (BWHEM) is introduced that provides a means for assessing breaking hazard at long mean return periods over a large domain along the U.S. Atlantic Coast. The BWHEM combines commonly used breaking criteria with the Inverse First Order Method of producing environmental contours, and is applied in a numerical study using a catalog of stochastic hurricanes. The result of the study shows that breaking wave hazard estimation is highly sensitive to the breaking criteria chosen. Criteria including wave steepness and seafloor slope were found to predict breaking conditions at shorter return periods than criteria with only wave height and water depth taken into consideration. Breaking hazard was found to be most important for locations closer to the coast, where breaking was predicted to occur at lower mean return periods than locations further offshore.


Author(s):  
Martin Storheim ◽  
Gunnar Lian

Steep breaking waves can result in high impact loads on offshore structures, and several model test campaigns have been conducted to assess the effect of horizontal wave slamming. High loads have been measured, and they can be challenging to withstand without significant deformation. For wave slamming problems it is common to estimate the characteristic slamming load and assume that this will give an equivalent characteristic response. One challenge related to the slamming load is that it has a large variability in load level, the duration of the load and the shape of the overall load pulse. This variability can have a large impact on the estimated response to the characteristic load, causing a similar or larger variability in response. Due to the sensitivity to the structural response, it may be difficult to interpret large amounts of such data to arrive at a relevant design load without making overly conservative assumptions. This paper investigates the sensitivity of the structural response to assumptions made in the material modelling and how the short term variability is affected if we instead of load use response indicators such as plastic strain and max deformation to arrive at a characteristic load. For this purpose, a simplified dynamic response model is created, and the recorded wave impact events can then be evaluated based on the predicted structural response from the simplified model. It was found that the structural response is sensitive to the structural configuration. The assumed material behavior and hydro-elastoplastic effects were identified to greatly affect the structural response. A reasonable approach to arrive at the q-annual response seems to be to first estimate the q-annual extreme slamming load, and then run the structural analysis on several of the measured slamming time series with the estimated q-annual extreme pressure.


Author(s):  
Hannah M. Johlas ◽  
Spencer Hallowell ◽  
Shengbai Xie ◽  
Pedro Lomonaco ◽  
Matthew A. Lackner ◽  
...  

Fixed-bottom offshore wind turbines (OWTs) are typically located in shallow to intermediate water depth, where waves are likely to break. Support structure designs for such turbines must account for loads due to breaking waves, but predictions from breaking wave models often disagree with each other and with observed behavior. This variability indicates the need for a better understanding of each model’s strengths and limitations, especially for different ocean conditions. This work evaluates and improves the accuracy of common breaking wave criteria through comparison to Computational Fluid Dynamics (CFD) simulations of breaking waves. The simulated ocean conditions are representative of potential U.S. East Coast offshore wind energy development sites, but the discussion of model accuracy and limitations can be applied to any location with similar ocean conditions. The waves are simulated using CONVERGE, a commercial CFD software that uses a Volume of Fluid (VOF) approach and includes adaptive mesh refinement at the evolving air-water interface. First, the CFD model is validated against experimental data for shoaling and breaking wave surface elevations. Second, 2D simulations of breaking waves are compared to widely-used breaking wave limits (McCowan, Miche, and Goda) for different combinations of wave height, wavelength, water depth, and seafloor slope. Based on these comparisons, the accuracy and limitations of each breaking limit model are discussed. General usage guidelines are then recommended.


2021 ◽  
Author(s):  
Sweyn Johnston ◽  
John McGlynn ◽  
Veronica R. Prado ◽  
Joseph Williams

This publication assesses the potential for deployment of the leading Marine Renewable Energy (MRE) technologies including Fixed Offshore Wind, Floating Offshore Wind, Ocean Thermal Energy Conversion across nine Countries of Interest (COI) in the Caribbean region. This is achieved by conducting a technology review, analysing resource levels in each of the COIs, and presenting the outputs of Locational Guidance work identifying preferred areas for potential future project development. This work concludes that MRE can offer a secure supply of indigenous clean energy, that resources are sufficiently abundant to meet the current and future energy demand of each of the COIs many times over, and that the leading MRE technologies are sufficiently advanced to be worthy of immediate prioritisation. This Technical Note draws on and presents outcomes from work undertaken in 2019 as part of a Technical Cooperation Agreement between the IDB and CDB under the Support for Sustainable and Resilient Projects in the Caribbean programme.


Author(s):  
Erik Jan de Ridder ◽  
Pieter Aalberts ◽  
Joris van den Berg ◽  
Bas Buchner ◽  
Johan Peeringa

The effects of operational loads and wind loads on offshore monopile wind turbines are well understood. For most sites, however, the water depth is such that breaking or near-breaking waves will occur causing impulsive excitation of the monopile and consequently considerable stresses and displacements in the monopile, tower and turbine. To investigate this, pilot model tests were conducted with a special model of an offshore wind turbine with realistic flexibility tested in (extreme) waves. This flexibility was considered to be necessary for two reasons: the impulsive loading of extreme waves is very complex and there can be an interaction between this excitation and the dynamic response of the foundation and tower. The tests confirmed the importance of the topic of breaking waves: horizontal accelerations of more than 0.5g were recorded at nacelle level in extreme cases.


2020 ◽  
Vol 205 ◽  
pp. 12008
Author(s):  
William F Van Impe ◽  
Shin-Tower Wang

The analyses of monopile foundations have been heavily based on the p-y response curves (to represent lateral soil resistances) published by API RP 2GEO (2011) and DNV (2013), which are proven reliable and applicable for piles with smaller diameters that were normally used for jacket structures in the offshore industry. However, concerns have been raised about the validity of semi-empirical p-y criteria for large-diameter piles. Wind turbine monopiles have a significantly larger diameter and smaller length to diameter ratio than typical piles used for offshore structures. The ratio of the length to the diameter for a monopile typically is also significantly smaller than those used in the API load tests. Therefore, the response of a monopile may be more like a rigid rotation, with components of resistance mobilized at the tip and axially along the sides as it rotates. This behaviour is in contrast to long slender piles that respond to lateral loading in bending rather than rotation. The objective of this paper is to analyze the factors that may contribute to the apparent conservatism in the current design practice for large-diameter monopile foundations and to provide improved solutions on how to analyze and design the large-diameter monopiles for offshore wind turbine using the p-y method.


Author(s):  
Pietro D. Tomaselli ◽  
Erik Damgaard Christensen

In impacts of breaking waves on offshore structures, it is still not well-known how the air entrainment phenomenon affects the exerted loads. In this paper, a developed CFD solver capable of simulating the air entrainment process was employed to reproduce an experimental investigation on the impact of a spilling wave against a circular cylinder. The exerted in-line force was computed with and without the inclusion of dispersed bubbles. Results showed that the magnitude of the computed force was affected when the entrainment of bubbles was simulated.


Sign in / Sign up

Export Citation Format

Share Document