A portable six-wheeled mobile robot with reconfigurable body and self-adaptable obstacle-climbing mechanisms

2022 ◽  
pp. 1-39
Author(s):  
Zhen Song ◽  
Zirong Luo ◽  
Guowu Wei ◽  
Jianzhong Shang

Abstract Mobile robots can replace rescuers in rescue and detection missions in complex and unstructured environments and draw the interest of many researchers. This paper presents a novel six-wheeled mobile robot with a reconfigurable body and self-adaptable obstacle-climbing mechanisms, which can reconfigure itself to three locomotion states to realize the advantages of terrain adaptability, obstacle crossing ability and portability. Design criteria and mechanical design of the proposed mobile robot are firstly presented, based on which the geometry of the robot is modelled and the geometric constraint, static conditions and motion stability condition for obstacle crossing of the robot are derived and formulated. Numerical simulations are then conducted to verify the geometric passing capability, static passing capability and motion stability and find feasible structure parameters of the robot in obstacle crossing. Further, a physical prototype of the proposed mobile robot is developed and integrated with mechatronic systems and remote control. Using the prototype, field experiments are carried out to verify the feasibility of the proposed design and theoretical derivations. The results show that the proposed mobile robot satisfies all the criteria set and is feasible for applications in disastrous rescuing scenarios.

2014 ◽  
Vol 902 ◽  
pp. 207-212
Author(s):  
Yu Lin Wang ◽  
Zheng Ji ◽  
Kuan Huang ◽  
Wei Jun Tao ◽  
Hu Tian Feng ◽  
...  

The wheeled mobile robot has been widely used in various fields nowadays. Combining with a contest of mobile robot used for sorting and conveying objects, this paper designed a non-tracking wheeled mobile robot, which can move according to a reasonable route planned beforehand. First, the overall schematic design of mobile robot was introduced. Then the mechanical design and the circuit system design were discussed in detail. Last, the strategy of sorting and conveying was studied, and the innovative rotary-wheel mechanism can greatly simplify the sorting and conveying strategy. Through experiment verified, the proposed wheeled mobile robot can quickly achieve sorting and conveying according to preplanned paths.


Sensors ◽  
2019 ◽  
Vol 19 (2) ◽  
pp. 426 ◽  
Author(s):  
Ji-Gong Li ◽  
Meng-Li Cao ◽  
Qing-Hao Meng

In this paper, we present an estimation-based route planning (ERP) method for chemical source searching using a wheeled mobile robot and validate its effectiveness with outdoor field experiments. The ERP method plans a dynamic route for the robot to follow to search for a chemical source according to time-varying wind and an estimated chemical-patch path (C-PP), where C-PP is the historical trajectory of a chemical patch detected by the robot, and normally different from the chemical plume formed by the spatial distribution of all chemical patches previously released from the source. Owing to the limitations of normal gas sensors and actuation capability of ground mobile robots, it is quite hard for a single robot to directly trace the intermittent and rapidly swinging chemical plume resulting from the frequent and random changes of wind speed and direction in outdoor field environments. In these circumstances, tracking the C-PP originating from the chemical source back could help the robot approach the source. The proposed ERP method was tested in two different outdoor fields using a wheeled mobile robot. Experimental results indicate that the robot adapts to the time-varying airflow condition, arriving at the chemical source with an average success rate and approaching effectiveness of about 90% and 0.4~0.6, respectively.


Author(s):  
Roman Chertovskih ◽  
Anna Daryina ◽  
Askhat Diveev ◽  
Dmitry Karamzin ◽  
Fernando L. Pereira ◽  
...  

2016 ◽  
Vol 9 (3) ◽  
pp. 215-221
Author(s):  
Junpeng Shao ◽  
Tianhua He ◽  
Jingang Jiang ◽  
Yongde Zhang

2021 ◽  
pp. 107754632199918
Author(s):  
Rongrong Yu ◽  
Shuhui Ding ◽  
Heqiang Tian ◽  
Ye-Hwa Chen

The dynamic modeling and trajectory tracking control of a mobile robot is handled by a hierarchical constraint approach in this study. When the wheeled mobile robot with complex generalized coordinates has structural constraints and motion constraints, the number of constraints is large and the properties of them are different. Therefore, it is difficult to get the dynamic model and trajectory tracking control force of the wheeled mobile robot at the same time. To solve the aforementioned problem, a creative hierarchical constraint approach based on the Udwadia–Kalaba theory is proposed. In this approach, constraints are classified into two levels, structural constraints are the first level and motion constraints are the second level. In the second level constraint, arbitrary initial conditions may cause the trajectory to diverge. Thus, we propose the asymptotic convergence criterion to deal with it. Then, the analytical dynamic equation and trajectory tracking control force of the wheeled mobile robot can be obtained simultaneously. To verify the effectiveness and accuracy of this methodology, a numerical simulation of a three-wheeled mobile robot is carried out.


Sign in / Sign up

Export Citation Format

Share Document