Numerical Simulation of Plastic Deformation of Pressurized Oblate Spheroid-Inscribed Single-Curvature Shells

1999 ◽  
Vol 122 (1) ◽  
pp. 235-243 ◽  
Author(s):  
S. H. Zhang ◽  
J. Danckert ◽  
Z. R. Wang ◽  
K. B. Nielsen

The integral hydro-bulge forming (IHBF) technology is used for manufacturing oblate spheroidal shells. A mild steel oblate spheroidal shell and a stainless steel shell were manufactured by using this new technology. The IHBF processes of the experimental shells are simulated by using an explicit finite element code, the numerical results are discussed and compared with the experimental results. Based on the numerical simulations and experimental results, a few suggestions are made for improving the new technology. [S1087-1357(00)71201-9]


Author(s):  
Guide Deng ◽  
Ping Xu ◽  
Jinyang Zheng ◽  
Yongjun Chen ◽  
Yongle Hu ◽  
...  

Determining blast loadings on an explosion containment vessel (ECV) is the foundation to design the ECV. Explosion of TNT centrally located in a thick-walled cylindrical vessel and its impact on the cylinder was simulated using the explicit finite element code LS-DYNA. Blast loadings on the cylinder computed are in good agreement with the corresponding experimental results. Then wall thickness and yield stress of the cylinder were changed in the following simulation to investigate effect of shell deformation on blast loadings. It is revealed that shell deformation during the primary pulses of blast loadings is so slight that it has little influence on the blast loadings. Though the deformation may increase greatly after the primary pulses, the dynamic response of an ECV is mainly affected by the primary pulses. Therefore, decoupled analyses are appropriate, in which the shell of an ECV is treated as a rigid wall when determining blast loadings on it.



1983 ◽  
Vol 105 (4) ◽  
pp. 257-263 ◽  
Author(s):  
Y. Ohashi ◽  
M. Kawai ◽  
H. Shimizu

History effects of prior creep on subsequent plasticity were studied for type 316 stainless steel at 600°C under combined torsion and tension. Following each of three different amounts of prior torsional creep, plastic deformation tests were performed under torsions in the same and opposite directions of the prior creep and axial tension, respectively. The experimental results showed the marked influence of prior creep on subsequent plasticity. That is, the flow stress in the subsequent plastic deformation after creep became larger than the one in the corresponding pure plastic test where the prior creep strain in the combined creep-plasticity test was replaced by a plastic strain of the same amount. Finally, predictions by means of existing separated and unified constitutive equations were discussed on the basis of the experimental results.



Author(s):  
Pramod Kumar ◽  
Amar Nath Sinha

A numerical simulation of temperature distribution in laser welding of 304L austenitic stainless steel have been investigated in the present research work. A three-dimensional Gaussian conical moving heat source has been implemented in the present numerical simulation using ANSYS software package. Temperature-dependent thermal physical properties of 304L austenitic stainless steel have been considered, which affects the temperature profile in the weldment. The effect of laser welding process parameters, namely, average beam power, welding speed, and laser spot diameter on weld bead geometry have been studied. The temperature distribution obtained from the numerical results at different positions away from the weld line were found to be in good agreement with the experimental results. The shape of the weld pool profile obtained through numerical simulation are in good agreement with the experimental results. Mechanical properties of the welded joint have also been studied. The ultimate tensile strength of the laser welded sample was equal to the base metal 304L austenitic stainless steel.



1998 ◽  
Vol 26 (2) ◽  
pp. 109-119 ◽  
Author(s):  
M. Koishi ◽  
K. Kabe ◽  
M. Shiratori

Abstract The finite element method has been used widely in tire engineering. Most tire simulations using the finite element method are static analyses, because tires are very complex nonlinear structures. Recently, transient phenomena have been studied with explicit finite element analysis codes. In this paper, the authors demonstrate the feasibility of tire cornering simulation using an explicit finite element code, PAM-SHOCK. First, we propose the cornering simulation using the explicit finite element analysis code. To demonstrate the efficiency of the proposed simulation, computed cornering forces for a 175SR14 tire are compared with experimental results from an MTS Flat-Trac Tire Test System. The computed cornering forces agree well with experimental results. After that, parametric studies are conducted by using the proposed simulation.





1987 ◽  
Vol 19 (12) ◽  
pp. 79-83
Author(s):  
K. Bartoszewski ◽  
A. Bilyk

Rettery wastewaters were treated in anaerobic and aerobic ponds. Anaerobic treatment yielded efficiencies of BOD5 and COD removal as low as 20%. The treatment process conducted under aerobic conditions in aerated and stabilizing ponds arranged in series took from 18 to 20 days and gave efficiencies of BOD5 and COD removal amounting to 90%. The experimental results were interpreted by virtue of the Eckenfelder equation. Excess activated sludge was subjected to aerobic stabilization in a separate tank. A new technology was suggested for the existing obsolete industrial treatment plant.



Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2324
Author(s):  
Mirosław Szala ◽  
Dariusz Chocyk ◽  
Anna Skic ◽  
Mariusz Kamiński ◽  
Wojciech Macek ◽  
...  

From the wide range of engineering materials traditional Stellite 6 (cobalt alloy) exhibits excellent resistance to cavitation erosion (CE). Nonetheless, the influence of ion implantation of cobalt alloys on the CE behaviour has not been completely clarified by the literature. Thus, this work investigates the effect of nitrogen ion implantation (NII) of HIPed Stellite 6 on the improvement of resistance to CE. Finally, the cobalt-rich matrix phase transformations due to both NII and cavitation load were studied. The CE resistance of stellites ion-implanted by 120 keV N+ ions two fluences: 5 × 1016 cm−2 and 1 × 1017 cm−2 were comparatively analysed with the unimplanted stellite and AISI 304 stainless steel. CE tests were conducted according to ASTM G32 with stationary specimen method. Erosion rate curves and mean depth of erosion confirm that the nitrogen-implanted HIPed Stellite 6 two times exceeds the resistance to CE than unimplanted stellite, and has almost ten times higher CE reference than stainless steel. The X-ray diffraction (XRD) confirms that NII of HIPed Stellite 6 favours transformation of the ε(hcp) to γ(fcc) structure. Unimplanted stellite ε-rich matrix is less prone to plastic deformation than γ and consequently, increase of γ phase effectively holds carbides in cobalt matrix and prevents Cr7C3 debonding. This phenomenon elongates three times the CE incubation stage, slows erosion rate and mitigates the material loss. Metastable γ structure formed by ion implantation consumes the cavitation load for work-hardening and γ → ε martensitic transformation. In further CE stages, phases transform as for unimplanted alloy namely, the cavitation-inducted recovery process, removal of strain, dislocations resulting in increase of γ phase. The CE mechanism was investigated using a surface profilometer, atomic force microscopy, SEM-EDS and XRD. HIPed Stellite 6 wear behaviour relies on the plastic deformation of cobalt matrix, starting at Cr7C3/matrix interfaces. Once the Cr7C3 particles lose from the matrix restrain, they debond from matrix and are removed from the material. Carbides detachment creates cavitation pits which initiate cracks propagation through cobalt matrix, that leads to loss of matrix phase and as a result the CE proceeds with a detachment of massive chunk of materials.



Sign in / Sign up

Export Citation Format

Share Document