Nonaxisymmetric Turbine End Wall Design: Part I— Three-Dimensional Linear Design System

1999 ◽  
Vol 122 (2) ◽  
pp. 278-285 ◽  
Author(s):  
Neil W. Harvey ◽  
Martin G. Rose ◽  
Mark D. Taylor ◽  
Shahrokh Shahpar ◽  
Jonathan Hartland ◽  
...  

A linear design system, already in use for the forward and inverse design of three-dimensional turbine aerofoils, has been extended for the design of their end walls. This paper shows how this method has been applied to the design of a nonaxisymmetric end wall for a turbine rotor blade in linear cascade. The calculations show that nonaxisymmetric end wall profiling is a powerful tool for reducing secondary flows, in particular the secondary kinetic energy and exit angle deviations. Simple end wall profiling is shown to be at least as beneficial aerodynamically as the now standard techniques of differentially skewing aerofoil sections up the span, and (compound) leaning of the aerofoil. A design is presented that combines a number of end wall features aimed at reducing secondary loss and flow deviation. The experimental study of this geometry, aimed at validating the design method, is the subject of the second part of this paper. The effects of end wall perturbations on the flow field are calculated using a three-dimensional pressure correction based Reynolds-averaged Navier–Stokes CFD code. These calculations are normally performed overnight on a cluster of work stations. The design system then calculates the relationships between perturbations in the end wall and resulting changes in the flow field. With these available, linear superposition theory is used to enable the designer to investigate quickly the effect on the flow field of many combinations of end wall shapes (a matter of minutes for each shape). [S0889-504X(00)00902-8]

Author(s):  
Neil W. Harvey ◽  
Martin G. Rose ◽  
Mark D. Taylor ◽  
Shahrokh Shahpar ◽  
Jonathan Hartland ◽  
...  

A linear design system, already in use for the forward and inverse design of three-dimensional turbine aerofoils, has been extended for the design of their end walls. This paper shows how this method has been applied to the design of a non-axisymmetric end wall for a turbine rotor blade in linear cascade. The calculations show that non-axisymmetric end wall profiling is a powerful tool for reducing secondary flows, in particular the secondary kinetic energy and exit angle deviations. Simple end wall profiling is shown to be at least as beneficial aerodynamically as the now standard techniques of differentially skewing aerofoil sections up the span, and (compound) leaning of the aerofoil. A design is presented which combines a number of end wall features aimed at reducing secondary loss and flow deviation. The experimental study of this geometry, aimed at validating the design method, is the subject of the second part of this paper. The effects of end wall perturbations on the flow field are calculated using a 3-D pressure correction based Reynolds Averaged Navier-Stokes CFD code. These calculations are normally performed overnight on a cluster of work stations. The design system then calculates the relationships between perturbations in the end wall and resulting changes in the flow field. With these available, linear superposition theory is used to enable the designer to investigate quickly the effect on the flow field of many combinations of end wall shapes (a matter of minutes for each shape).


Author(s):  
J. Luo ◽  
B. Lakshminarayana

The 3-D viscous flowfield in the rotor passage of a single-stage turbine, including the tip-leakage flow, is computed using a Navier-Stokes procedure. A grid-generation code has been developed to obtain embedded H grids inside the rotor tip gap. The blade tip geometry is accurately modeled without any “pinching”. Chien’s low-Reynolds-number k-ε model is employed for turbulence closure. Both the mean-flow and turbulence transport equations are integrated in time using a four-stage Runge-Kutta scheme. The computational results for the entire turbine rotor flow, particularly the tip-leakage flow and the secondary flows, are interpreted and compared with available data. The predictions for major features of the flowfield are found to be in good agreement with the data. Complicated interactions between the tip-clearance flows and the secondary flows are examined in detail. The effects of endwall rotation on the development and interaction of secondary and tip-leakage vortices are also analyzed.


2020 ◽  
Vol 142 (10) ◽  
Author(s):  
Wen Yao Lee ◽  
William N. Dawes ◽  
John D. Coull

Abstract Casting deviations introduce geometric variability that impacts the aerodynamic performance of turbomachinery. These effects are studied for a high-pressure turbine rotor blade from a modern aero-engine. A sample of 197 blades were measured using structured-light three-dimensional scanning, and the performance of each blade is quantified using Reynolds-averaged Navier–Stokes (RANS) simulations. Casting variation is typically managed by applying geometric tolerances to determine the suitability of a component for service. The analysis demonstrates that this approach may not be optimal since it does not necessarily align with performance, in particular the capacity and efficiency. Alternatively, functional acceptance based on the predicted performance of each blade removes the uncertainty associated with geometric tolerancing and gives better performance control. Building on these findings, the paper proposes a method to set the orientation of the fir-tree, which is machined after casting. By customizing the alignment of each blade, performance variability and scrap rates can be significantly reduced. The method uses predictions of performance to reorient the castings to compensate for manufacturing-induced errors, without changing the design-intent blade geometry and with minimal changes to the manufacturing facility.


Author(s):  
K. Yamada ◽  
K. Funazaki ◽  
M. Kikuchi ◽  
H. Sato

A study on the effects of the axial gap between stator and rotor upon the stage performance and flow field of a single axial flow turbine stage is presented in this paper. Three axial gaps were tested, which were achieved by moving the stator vane in the axial direction while keeping the disk cavity constant. The effect of the axial gap was investigated at two different conditions, that is design and off-design conditions. The unsteady three-dimensional flow field was analyzed by time-accurate RANS (Reynolds-Averaged Navier-Stokes) simulations. The simulation results were compared with the experiments, in which total pressure and the time-averaged flow field upstream and downstream of the rotor were obtained by five-hole probe measurements. The effect of the axial gap was confirmed in the endwall regions, and obtained relatively at off-design condition. The turbine stage efficiency was improved almost linearly by reducing the axial gap at the off-design condition.


Author(s):  
R. Heider ◽  
J. M. Duboue ◽  
B. Petot ◽  
G. Billonnet ◽  
V. Couaillier ◽  
...  

A 3D Navier-Stokes investigation of a high pressure turbine rotor blade including tip clearance effects is presented. The 3D Navier-Stokes code developed at ONERA solves the three-dimensional unsteady set of mass-averaged Navier-Stokes equations by the finite volume technique. A one step Lax-Wendroff type scheme is used in a rotating frame of reference. An implicit residual smoothing technique has been implemented, which accelerates the convergence towards the steady state. A mixing length model adapted to 3D configurations is used. The turbine rotor flow is calculated at transonic operating conditions. The tip clearance effect is taken into account. The gap region is discretized using more than 55,000 points within a multi-domain approach. The solution accounts for the relative motion of the blade and casing surfaces. The total mesh is composed of five sub-domains and counts 710,000 discretization points. The effect of the tip clearance on the main flow is demonstrated. The calculation results are compared to a 3D inviscid calculation, without tip clearance.


1993 ◽  
Vol 115 (3) ◽  
pp. 602-613 ◽  
Author(s):  
Y. L. Yang ◽  
C. S. Tan ◽  
W. R. Hawthorne

A computational method based on a theory for turbomachinery blading design in three-dimensional inviscid flow is applied to a parametric design study of a radial inflow turbine wheel. As the method requires the specification of swirl distribution, a technique for its smooth generation within the blade region is proposed. Excellent agreements have been obtained between the computed results from this design method and those from direct Euler computations, demonstrating the correspondence and consistency between the two. The computed results indicate the sensitivity of the pressure distribution to a lean in the stacking axis and a minor alteration in the hub/shroud profiles. Analysis based on a Navier–Stokes solver shows no breakdown of flow within the designed blade passage and agreement with that from a design calculation; thus the flow in the designed turbine rotor closely approximates that of an inviscid one. These calculations illustrate the use of a design method coupled to an analysis tool for establishing guidelines and criteria for designing turbomachinery blading.


1996 ◽  
Vol 118 (2) ◽  
pp. 307-313 ◽  
Author(s):  
A. A. Ameri ◽  
A. Arnone

The effect of transition modeling on the heat transfer predictions from rotating turbine blades was investigated. Three-dimensional computations using a Reynolds-averaged Navier–Stokes code were performed. The code utilized the Baldwin–Lomax algebraic turbulence model, which was supplemented with a simple algebraic model for transition. The heat transfer results obtained on the blade surface and the hub endwall were compared with experimental data for two Reynolds numbers and their corresponding rotational speeds. The prediction of heat transfer on the blade surfaces was found to improve with the inclusion of the transition length model and wake-induced transition effects over the simple abrupt transition model.


1984 ◽  
Vol 106 (2) ◽  
pp. 414-420 ◽  
Author(s):  
J.-J. Camus ◽  
J. D. Denton ◽  
J. V. Soulis ◽  
C. T. J. Scrivener

Detailed experimental measurements of the flow in a cascade of turbine rotor blades with a nonplanar end wall are reported. The cascade geometry was chosen to model as closely as possible that of a H.P. gas turbine rotor blade. The blade section is designed for supersonic flow with an exit Mach number of 1.15 and the experiments covered a range of exit Mach numbers from 0.7–1.2. Significant three-dimensional effects were observed and the origin of these is discussed. The measurements are compared with data for the same blade section in a two-dimensional cascade and also with the predictions of two different fully three-dimensional inviscid flow calculation methods. It is found that both these calculations predict the major three-dimensional effects on the flow correctly.


1998 ◽  
Vol 120 (4) ◽  
pp. 723-735 ◽  
Author(s):  
M. Zangeneh ◽  
A. Goto ◽  
H. Harada

In this paper, for the first time, a set of guidelines is presented for the systematic design of mixed flow and centrifugal compressors and pumps with suppressed secondary flows and a uniform exit flow field. The paper describes the shape of the optimum pressure distribution for the suppression of secondary flows in the impeller with reference to classical secondary flow theory. The feasibility of achieving this pressure distribution is then demonstrated by deriving guidelines for the design specifications of a three-dimensional inverse design method, in which the blades are designed subject to a specified circulation distribution or 2πrVθ. The guidelines will define the optimum choice of the blade loading or ∂rVθ/∂m and the stacking condition for the blades. These guidelines are then used in the design of three different low specific speed centrifugal pump impellers and a high specific speed industrial centrifugal compressor impellers. The flows through all the designed impellers are computed numerically by a three-dimensional viscous code and the resulting flow field is compared to that obtained in the corresponding conventional impeller. The results show consistent suppression of secondary flows in all cases. The design guidelines are validated experimentally by comparing the performance of the inverse designed centrifugal compressor impeller with the corresponding conventional impeller. The overall performance of the stage with the inverse designed impeller with suppressed secondary flows was found to be 5 percent higher than the conventional impeller at the peak efficiency point. Exit flow traverse results at the impeller exit indicate a more uniform exit flow than that measured at the exit from the conventional impeller.


1992 ◽  
Author(s):  
K. R. Kirtley ◽  
T. A. Beach ◽  
Cass Rogo

A numerical simulation of a transonic mixed flow turbine stage has been carried out using an average passage Navier-Stokes analysis. The mixed flow turbine stage considered here consists of a transonic nozzle vane and a highly loaded rotor. The simulation was run at the design pressure ratio and is assessed by comparing results with those of an established throughflow design system. The three-dimensional aerodynamic loads are studied as well as the development and migration of secondary flows and their contribution to the total pressure loss. The numerical results indicate that strong passage vortices develop in the nozzle vane, mix out quickly, and have little impact on the rotor flow. The rotor is highly loaded near the leading edge. Within the rotor passage, strong spanwise flows and other secondary flows exist along with the tip leakage vortex. The rotor exit loss distribution is similar in character to that found in radial inflow turbines. The secondary flows and non-uniform work extraction also tend to significantly redistribute a non-uniform inlet total temperature profile by the exit of the stage.


Sign in / Sign up

Export Citation Format

Share Document