Two-Step Approach of Stress Classification and Primary Structure Method

1999 ◽  
Vol 122 (1) ◽  
pp. 2-8 ◽  
Author(s):  
Ming-Wan Lu ◽  
Yong Chen ◽  
Jian-Guo Li

A key problem in engineering applications of “design by analysis” approach is how to decompose a total stress field obtained by the finite element analysis into different stress categories defined in the ASME Code III and VIII-2. In this paper, we suggest a two-step approach (TSA) of stress classification and a primary structure method (PSM) for identification of primary stress. Together with the equivalent linearization method (ELM), the stress classification problem is well solved. Some important concepts and ideas discussed by Lu and Li [Lu, M. W., and Li, J. G., 1986, ASME PVP-Vol. 109, pp. 33–37; Lu, M. W., and Li, J. G., 1996, ASME PVP-Vol. 340, pp. 357–363] are introduced. They are self-limiting stress, multi-possibility of stress decomposition, classification of constraints, and primary structures. For identification of peak stress, a modified statement of its characteristic and a “1/4 thickness criterion” are given. [S0094-9930(00)00201-8]

2007 ◽  
Vol 353-358 ◽  
pp. 373-376 ◽  
Author(s):  
Bing Jun Gao ◽  
Xiao Ping Shi ◽  
Hong Yan Liu ◽  
Jin Hong Li

A key problem in engineering application of “design by analysis” approach is how to decompose a total stress field obtained by the finite element analysis into different stress categories defined in the ASME Code III and VIII-2. In this paper, we suggested an approach to separate primary stress with the principle of superposition, in which the structure does not need to be cut into primary structure but analyzed as a whole only with decomposed load. Taking pressurized cylindrical vessel with plate head as example, the approach is demonstrated and discussed in detail. The allowable load determined by the supposed method is a little conservative than that determined by limited load analysis.


Author(s):  
Anindya Bhattacharya ◽  
Sachin Bapat ◽  
Hardik Patel ◽  
Shailan Patel

Stress classification at shell and nozzle interface had always been an interesting and challenging problem for Engineers. Basic shell theory analyses shell stresses as membrane with local bending stresses developed at locations of discontinuity and load applications. Since in a shell structure, bending stresses develop to mainly maintain compatibility of deformation and membrane stresses to equilibrate the applied load, a simple stress classification will be to categorize the bending stresses as secondary stresses. This is because by definition, secondary stresses develop to maintain compatibility of deformation and primary stresses develop to maintain equilibrium with the applied load. This simplified analysis can result in errors as in real world 100% primary stress as well as 100% secondary stress is rare if not impossible [15], [16]. The widespread use of Finite Element Analysis has made this problem become even more challenging. Several researchers have addressed the problems of stress classification. References [1], [2], [3], [4], [5[, [6], [11], [12] can be consulted for additional details. In this paper the work done by Chen and Li [1], using the two step primary structure method has been used to analyse the problem of stress classification of a shell and nozzle. The spirit of the method has been retained, but several FE models have been made with some deviations from the method in ref.[1], to meaningfully arrive at primary structures.


Author(s):  
Anindya Bhattacharya ◽  
Shailan Patel ◽  
Sachin Bapat ◽  
Michael P. Cross ◽  
Hardik Patel

Stress classification at shell and nozzle interface has always been an interesting and challenging problem for Engineers. Basic shell theory analyses shell stresses as membrane with local bending stresses developed at locations of discontinuity and load applications. Since in a shell structure, bending stresses develop to mainly maintain compatibility of deformation and membrane stresses to equilibrate the applied load, a simple stress classification will be to categorize the bending stresses as secondary stresses. This is because by definition, secondary stresses develop to maintain compatibility of deformation and primary stresses develop to maintain equilibrium with the applied load. This simplified analysis can result in errors as in real world 100% primary stress as well as 100% secondary stress is rare if not impossible. The widespread use of Finite Element Analysis has made this problem become even more challenging. In this paper the work done by Chen and Li [1], using the two step primary structure method has been used to analyze the problem of stress classification of a shell and nozzle. This paper is a continuation of the author’s previous work on this topic [21]. In the previous paper, the sensitivity of modelling and the effect of the same on the results were investigated. However, the various approaches adapted in the paper [21], were not exactly in the true spirit of the method i.e in all the models, stresses in the vessels and nozzles were checked separately and compared against the stresses in the vessel and nozzle in the original model where by “original “model we mean the model with the vessel and nozzle modelled together i.e. connected along the space curve of intersection in all six degrees of freedom. The spirit of the method requires that the comparison has to be with reference to maximum M+B stresses in the original and reduced structure ( a “reduced” structure means where the vessel and the nozzle are not connected along some degrees of freedom along the space curve of intersection) and not individually in the vessels and nozzles and the M+B stresses have to be evaluated anywhere on the structure and not just at and close to the space curve of intersection. It is because of these reasons that [21] in not exactly in spirit of the method. In other words, the development of this paper was motivated by the fact that the previous paper did not use the exact spirit of the method and hence to investigate how its exact implementation changes results. This is the approach followed in this paper. A point to note; not in spirit of the method does not necessarily mean that the approach taken in [21] was not correct. It’s just that it was not in line with the way this method was defined by Chen and Li [1] and the present authors used their subjective approach to the problem. Additionally, this paper investigates the effect of geometric parameters like D/T, d/t and t/T on the results which was not investigated in the previous paper.


Author(s):  
Chenghong Duan ◽  
Xinchen Wei ◽  
Jinhao Huang ◽  
Mingwan Lu

The primary structure method is one of the effective methods to distinguish the primary stress and secondary stress. The knotty problem of stress classification can be solved by using the primary structure method and the equivalent linearization of stresses. The primary structure method has been successfully used to the finite element analyses with 2D axisymmetric elements and shell elements. A method to construct the primary structures with 3D solid elements is given in this paper, and the stress classification of cylindrical shell with nozzle is discussed in a new point view.


2013 ◽  
Vol 135 (5) ◽  
Author(s):  
Andrzej T. Strzelczyk ◽  
Mike Stojakovic

ASME PVP Code stress linearization is needed for assessment of primary and primary-plus-secondary stresses. The linearization process is not precisely defined by the Code; as a result, it may be interpreted differently by analysts. The most comprehensive research on stress linearization is documented in the work of Hechmer and Hollinger [1998, “3D Stress Criteria Guidelines for Application,” WRC Bulletin 429.] Recently, nonmandatory recommendations on stress linearization have been provided in the Annex [Annex 5.A of Section VIII, Division 2, ASME PVP Code, 2010 ed., “Linearization of Stress Results for Stress Classification.”] In the work of Kalnins [2008, “Stress Classification Lines Straight Through Singularities” Proceedings of PVP2008-PVT, Paper No. PVP2008-61746] some linearization questions are discussed in two examples; the first is a plane-strain problem and the second is an axisymmetric analysis of primary-plus secondary stress at a cylindrical-shell/flat-head juncture. The paper concludes that for the second example, the linearized stresses produced by Abaqus [Abaqus Finite Element Program, Version 6.10-1, 2011, Simulia Inc.] diverge, therefore, these linearized stresses should not be used for stress evaluation. This paper revisits the axisymmetric analysis discussed by Kalnins and attempts to show that the linearization difficulties can be avoided. The paper explains the reason for the divergence; specifically, for axisymmetric models Abaqus inconsistently treats stress components, two stress components are calculated from assumed formulas and all other components are linearized. It is shown that when the axisymmetric structure from Kalnins [2008, “Stress Classification Lines Straight Through Singularities” Proceedings of PVP2008-PVT, Paper No. PVP2008-61746] is modeled with 3D elements, the linearization results are convergent. Furthermore, it is demonstrated that both axisymmetric and 3D modeling, produce the same and correct stress Tresca stress, if the stress is evaluated from all stress components being linearized. The stress evaluation, as discussed by Kalnins, is a primary-plus-secondary-stresses evaluation, for which the limit analysis described by Kalnins [2001, “Guidelines for Sizing of Vessels by Limit Analysis,” WRC Bulletin 464.] cannot be used. This paper shows how the original primary-plus-secondary-stresses problem can be converted into an equivalent primary-stress problem, for which limit analysis can be used; it is further shown how the limit analysis had been used for verification of the linearization results.


2011 ◽  
Vol 368-373 ◽  
pp. 920-925 ◽  
Author(s):  
Yuan Chen ◽  
Jie Li

In this article,by incorporating equivalent linearization method and the orthogonal expansion method into the wave finite element analysis of scattering problem, an analytical methodology for the evaluation of seismic response of nonlinear soil site with uncertain properties is proposed . Example is given to show the applicability of the methodology. The results show that the randomness of the site media has important effect on seismic site response , the randomness has greater influence on the variation of accelerations than on displacements. The coupling of the nonlinearity and the randomness of soil enhances the effect of randomness on the soil site.


Author(s):  
Ihab F. Z. Fanous ◽  
R. Seshadri

The ASME Code Section III and Section VIII (Division 2) provide stress classification guidelines to interpret the results of a linear elastic finite element analysis. These guidelines enable the splitting of the generated stresses into primary, secondary and peak. The code gives some examples to explain the suggested procedures. Although these examples may reflect a wide range of applications in the field of pressure vessel and piping, the guidelines are difficult to use with complex geometries. In this paper, the r-node method is used to investigate the primary stresses and their locations in both simple and complex geometries. The method is verified using the plane beam and axisymmetric torispherical head. Also, the method is applied to analyze 3D straight and oblique nozzle modeled using both solid and shell elements. The results of the analysis of the oblique nozzle are compared with recently published experimental data.


1975 ◽  
Vol 97 (3) ◽  
pp. 199-205 ◽  
Author(s):  
D. P. Jones

Two- and three-dimensional finite element models were used to determine elastic stress distributions in plate ligaments for various in-plane, bending, and thermal loadings. Plates containing triangular penetration patterns of 5 and 10 percent ligament efficiency were analyzed as well as the example of a circular plate containing a single centrally placed hole subjected to step change in temperature on one surface. Detailed descriptions of boundary conditions are given with the results presented in terms of stresses important in tubesheet and vessel closure design considerations. Results show that the minimum ligament section of the perforated region need not be the critically stressed cross section as is currently assumed in the ASME Boiler and Pressure Vessel Code. Further, a thermal shock ΔT applied to the surface of a perforated region will result in a maximum peak stress of EαΔT/(1−ν) and may be significantly lower than the thermal skin stress calculated by the ASME Code procedures.


2021 ◽  
Vol 12 (3) ◽  
pp. 4103-4125

Biomechanics is the interdisciplinary area comprising biomedical and mechanical domain, continuations in research of alternative and sustainable materials, which refers to the mechanical examine. This current work focuses on hip implant material development through analytical and finite element analysis. The femur bone head is 3D modeled through computed tomography (CT) images extracted data and modeled in SOLIDWORKS. The analytical analysis is performed on the femur head through Hertzian theory. The finite element analysis (FEA) (static structural analysis) is carried out in the ANSYS 19.2. The materials considered for the FEA are NbTiZrMo alloy, PEEK and CFR-PEEK for the hip implant. The analytical analysis is performed for eight different human routine activities, and the highest peak stress value is obtained for walking fast. The peak stress values obtained in FEA for CFR-PEEK material implant are lower than the maximum peak stress obtained by analytical analysis. The stress value obtained for CFR-PEEK material is somewhat higher than PEEK, but the contact pressure for PEEK material is way higher than CFR-PEEK material implant. So, it is concluded that the CFR-PEEK material is the ideal alternative as compared to other materials.


1992 ◽  
Vol 27 (3) ◽  
pp. 177-185 ◽  
Author(s):  
L S Ong ◽  
A K Soh ◽  
J H Ong

The problem of a local dent on a pressurized pipe is studied in this paper. Two case problems of dent are considered - a plain local dent (a smooth local dent without a surface defect), and a local dent associated with a loss of thickness defect. The strain gauging test and the finite element analysis on the plain local dent showed that the strain distributions in the local dent are different from those of a long and continuous dent. The maximum hoop strain in the local dent is located at the flank of the dent, along the dent axial axis, whereas in the case of the long dent, it is located at the root of the dent. In addition, the peak stress in the local dent is generally lower than that in the long dent. To estimate the stress concentration in the local dent using the analysis for the long dent would be grossly overestimated. The burst pipe tests on 17 dented pipes showed that the pipe failures were generally insensitive to the existence of the local dents. The pipe failures were found to be due to the loss-of-thickness defect. The comparison of results between the burst pipe tests and the plastic collapse formula shows reasonably good agreement.


Sign in / Sign up

Export Citation Format

Share Document