Prediction of a Laminar Separation Bubble Over a Controlled-Diffusion Compressor Blade

Author(s):  
G. V. Hobson ◽  
S. Weber

The paper describes the comparison of the prediction of the flow through a cascade of controlled-diffusion compressor blades with two Navier-Stokes solvers. Both codes solved the thin-layer N-S equations, however; one code performed implicit time marching whereas the other performed explicit time marching. Flow predictions were accomplished with the implicit code using the algebraic turbulence model of Baldwin and Lomax and the one-equation model of Spalart and Allmaras, while predictions were made with the explicit code using the two-equation model by Wilcox. Predictions were made of the detailed laser-anemometry measurements of the flow field taken previously in a low-speed cascade wind tunnel. Comparisons were also made with the experimentally measured blade surface pressures and flow visualization of the extent of the laminar leading edge separation bubble. The one-equation turbulence model was combined with an intermittency based transition-length model for comparisons with fully turbulent calculations. Both codes predicted the leading-edge separation bubble satisfactorily when using higher order turbulence models.

1998 ◽  
Vol 4 (3) ◽  
pp. 201-216 ◽  
Author(s):  
Vijay K. Garg

A three-dimensional Navier–Stokes code has been used to compare the heat transfer coefficient on a film-cooled, rotating turbine blade. The blade chosen is the ACE rotor with five rows containing 93 film cooling holes covering the entire span. This is the only filmcooled rotating blade over which experimental data is available for comparison. Over 2.278 million grid points are used to compute the flow over the blade including the tip clearance region, using Coakley'sq-ωturbulence model. Results are also compared with those obtained by Garg and Abhari (1997) using the zero-equation Baldwin-Lomax (B-L) model. A reasonably good comparison with the experimental data is obtained on the suction surface for both the turbulence models. At the leading edge, the B-L model yields a better comparison than theq-ωmodel. On the pressure surface, however, the comparison between the experimental data and the prediction from either turbulence model is poor. A potential reason for the discrepancy on the pressure surface could be the presence of unsteady effects due to stator-rotor interaction in the experiments which are not modeled in the present computations. Prediction using the two-equation model is in general poorer than that using the zero-equation model, while the former requires at least 40% more computational resources.


Author(s):  
Vijay K. Garg

A three-dimensional Navier-Stokes code has been used to compare the heat transfer coefficient on a film-cooled, rotating turbine blade. The blade chosen is the ACE rotor with five rows containing 93 film cooling holes covering the entire span. This is the only film-cooled rotating blade over which experimental data is available for comparison. Over 2.278 million grid points are used to compute the flow over the blade including the tip clearance region, using Coakley’s q-ω turbulence model. Results are also compared with those obtained by Garg and Abhari (1996) using the zero-equation Baldwin-Lomax (B-L) model. A reasonably good comparison with the experimental data is obtained on the suction surface for both the turbulence models. At the leading edge, the B-L model yields a better comparison than the q-ω model. On the pressure surface, however, the comparison between the experimental data and the prediction from either turbulence model is poor. A potential reason for the discrepancy on the pressure surface could be the presence of unsteady effects due to stator-rotor interaction in the experiments which are not modeled in the present computations. Prediction using the two-equation model is in general poorer than that using the zero-equation model, while the former requires at least 40% more computational resources.


Author(s):  
Atsushi Tateishi ◽  
Toshinori Watanabe ◽  
Takehiro Himeno ◽  
Chihiro Inoue

Leading edge separation of thin airfoil cascade in subsonic flow at large angle of incidence was simulated by implicit large eddy simulation (ILES) and Reynolds averaged Navier-Stokes (RANS) simulations with various turbulence models. In the ILES simulations with fine grids, the time-averaged surface pressure qualitatively agreed with the experimental data. The RANS and ILES simulations on the coarse mesh failed to capture a peak of pressure near the leading edge. From spectrum analysis, it was observed that the flow-field was turbulent in the separation bubble. In the failed RANS simulations, the separation bubble was much longer and the turbulence energy near the leading edge was much lower than those in the ILES results. The development of lambda-shaped vortex structures and their sudden weakening near the reattachment point was observed in the unsteady simulations. Two possible modifications to existing turbulence models in RANS simulations were proposed based on the comparison of turbulence energy between the ILES and RANS results. It is shown that these modifications improve the bubble length and Cp distributions of RANS simulations, though further validation and modeling are needed for the application to realistic cases.


Water SA ◽  
2019 ◽  
Vol 45 (3 July) ◽  
Author(s):  
Ahmed M Helmi

Floodways, where a road embankment is permitted to be overtopped by flood water, are usually designed as broad-crested weirs. Determination of the water level above the floodway is crucial and related to road safety. Hydraulic performance of floodways can be assessed numerically using 1-D modelling or 3-D simulation using computational fluid dynamics (CFD) packages. Turbulence modelling is one of the key elements in CFD simulations. A wide variety of turbulence models are utilized in CFD packages; in order to identify the most relevant turbulence model for the case in question, 96 3-D CFD simulations were conducted using Flow-3D package, for 24 broad-crested weir configurations selected based on experimental data from a previous study. Four turbulence models (one-equation, k-ε, RNG k-ε, and k-ω) ere examined for each configuration. The volume of fluid (VOF) algorithm was adopted for free water surface determination. In addition, 24 1-D simulations using HEC-RAS-1-D were conducted for comparison with CFD results and experimental data. Validation of the simulated water free surface profiles versus the experimental measurements was carried out by the evaluation of the mean absolute error, the mean relative error percentage, and the root mean square error. It was concluded that the minimum error in simulating the full upstream to downstream free surface profile is achieved by using one-equation turbulence model with mixing length equal to 7% of the smallest domain dimension. Nevertheless, for the broad-crested weir upstream section, no significant difference in accuracy was found between all turbulence models and the one-dimensional analysis results, due to the low turbulence intensity at this part. For engineering design purposes, in which the water level is the main concern at the location of the flood way, the one-dimensional analysis has sufficient accuracy to determine the water level.


1992 ◽  
Vol 169 (1) ◽  
pp. 143-163 ◽  
Author(s):  
DMITRY L. GRODNTTSKY ◽  
PAHVEL P. MOROZOV

Experiments on dust visualization of the flow around tethered flying green lacewings showed that, contrary to expectations based on the Weis-Fogh clap-andfling mechanism, a leading edge separation bubble does not exist near either fore-or hindwings. At the beginning of the stroke cycle each wing operates as an independent generator of vorticity. The vortex bubbles of all the four wings then unite, producing a single U-shaped bubble. A hypothetical spatial structure for the vortex wake is derived from a series of registrated sections of the wake illuminated with a flat light beam. Some problems of wing functional morphology and insect flight aerodynamics are also discussed.


2009 ◽  
Vol 131 (4) ◽  
Author(s):  
Pavel E. Smirnov ◽  
Florian R. Menter

A rotation-curvature correction suggested earlier by Spalart and Shur (1997, “On the Sensitization of Turbulence Models to Rotation and Curvature,” Aerosp. Sci. Technol., 1(5), pp. 297–302) for the one-equation Spalart–Allmaras turbulence model is adapted to the shear stress transport model. This new version of the model (SST-CC) has been extensively tested on a wide range of both wall-bounded and free shear turbulent flows with system rotation and/or streamline curvature. Predictions of the SST-CC model are compared with available experimental and direct numerical simulations (DNS) data, on the one hand, and with the corresponding results of the original SST model and advanced Reynolds stress transport model (RSM), on the other hand. It is found that in terms of accuracy the proposed model significantly improves the original SST model and is quite competitive with the RSM, whereas its computational cost is significantly less than that of the RSM.


Author(s):  
Emmanuel Guilmineau ◽  
Patrick Queutey

Calculations are reported for the flow around a two-dimensional, square cylinder at Re = 22,000 (based on the prism side dimension, D, and the free-stream velocity) placed at various distances from an adjacent wall. The nominal boundary layer thickness is 1.5D. Experiments have indicated that unsteady vortex shedding is suppressed when the wall is relatively close to the cylinder. The turbulent fluctuations are simulated with three turbulence models: the one-equation model of Spalart & Allmaras (1992), the two-equations SST K–ω model (Menter, 1993) and a Reynolds stress Rij–ω closures (Deng & Visonneau, 1999). The paper consists in comparing simulation and experimental results for configurations S/D = 1 (periodic case) and S/D = 0.25 (stationary case). Predicted and measured distributions of the mean velocity, Reynolds stress tensor and surface pressures are compared. Although the agreement is very good in general, observed discrepancies are discussed.


1991 ◽  
Vol 113 (3) ◽  
pp. 405-410 ◽  
Author(s):  
Kyuro Sasaki ◽  
Masaru Kiya

This paper describes the results of a flow visualization study which concerns three-dimensional vortex structures in a leading-edge separation bubble formed along the sides of a blunt flat plate. Dye and hydrogen bubbles were used as tracers. Reynolds number (Re), based on the plate thickness, was varied from 80 to 800. For 80 < Re < 320, the separated shear layer remains laminar up to the reattachment line without significant spanwise distortion of vortex filaments. For 320 < Re < 380, a Λ-shaped deformation of vortex filaments appears shortly downstream of the reattachment and is arranged in-phase in the downstream direction. For Re > 380, hairpin-like structures are formed and arranged in a staggered manner. The longitudinal and spanwise distances of the vortex arrangement are presented as functions of the Reynolds number.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Zhang Ming ◽  
P. A. Mbango-Ngoma ◽  
Du Xiao-zhen ◽  
Chen Qing-Guang

Hydraulic turbine runners experience high excitation forces in their daily operations, and these excitations may cause resonances to runners, which may induce high vibrations and shorten the runner's lifetimes. Increasing the added damping of runners in water can be helpful to reduce the vibration level during resonances. Some studies have shown that the modification of the trailing edge shape can be helpful to increase added damping of hydrofoils in water. However, the influence of blade trailing edge shape on the added damping of hydraulic turbine runners has been studied in a limited way before. Due to the difficulties to study this problem experimentally, the influence of blade trailing edge shape on a Kaplan turbine runner has been studied numerically in this paper and the one-way FSI method was implemented. The performances of three different turbulence models, including the k − ϵ , k − ω   SST , and transition SST models, in the added damping simulation of the NACA 0009 hydrofoil were evaluated by comparing with the available results of the two-way FSI simulation in the references. Results show that, unlike the significantly different performances in the two-way FSI method, the performances of all the turbulence models are very close in the one-way FSI method. Then, the k − ϵ turbulence model was applied to the added damping simulation of a Kaplan turbine runner, and results show that the modification of the blade trailing edge shape can be helpful to increase the added damping to some extent.


Author(s):  
K. Funazaki ◽  
Y. Harada ◽  
E. Takahashi

This paper describes an attempt to suppress a blade leading edge separation bubble by utilizing a stationary bar wake. This study aims at exploration of a possibility for reducing the aerodynamic loss due to blade boundary layer that is accompanied with the separation bubble. The test model used in this study consists of semi-circular leading edge and two parallel flat plates. It can be tilted against the inlet flow so as to change the characteristics of the separation bubble. Detailed flow measurements over the test model are conducted using a single hot-wire probe. Emphasis in this study is placed on the effect of bar shifting or bar clocking across the inlet flow in order to see how the bar-wake position with respect to the test model affects the separation bubble as well as aerodynamic loss generated within the boundary layer. The present study reveals a loss reduction through the separation bubble control using a properly clocked bar wake.


Sign in / Sign up

Export Citation Format

Share Document