Development and Implementation of Repair Processes for Refurbishment of W501F, Row 1 Turbine Blades

Author(s):  
Richard Curtis ◽  
Warren Miglietti ◽  
Michael Pelle

In recent years, orders for new land-based gas turbines have skyrocketed, as the planning, construction and commissioning of new power plants based on combined-cycle technology advances at an unprecedented pace. It is estimated that 65–70% of these new equipment orders is for high-efficiency, advanced “F”, “G” or “H” class machines. The W501F/FC/FD gas turbine, an “F” class machine currently rated at 186.5 MW (simple cycle basis), has entered service in significant numbers. It is therefore of prime interest to owners/operators of this gas turbine to have sound component refurbishment capabilities available to support maintenance requirements. Processes to refurbish the Row 1 turbine blade, arguably the highest “frequency of replacement” component in the combustion and hot sections of the turbine, were recently developed. Procedures developed include removal of brazed tip plates, coating removal, rejuvenation heat treatment, full tip replacement utilizing electron beam (EB) and automated micro-plasma transferred arc (PTA), joining methods, proprietary platform crack repair and re-coating. This paper describes repair procedure development and implementation for each stage of the process, and documents the metallurgical and mechanical characteristics of the repaired regions of the component.

2014 ◽  
Vol 136 (07) ◽  
pp. 38-43
Author(s):  
Lee S. Langston

This article focuses on the use of gas turbines for electrical power, mechanical drive, and marine applications. Marine gas turbines are used to generate electrical power for propulsion and shipboard use. Combined-cycle electric power plants, made possible by the gas turbine, continue to grow in size and unmatched thermal efficiency. These plants combine the use of the gas turbine Brayton cycle with that of the steam turbine Rankine cycle. As future combined cycle plants are introduced, we can expect higher efficiencies to be reached. Since almost all recent and new U.S. electrical power plants are powered by natural gas-burning, high-efficiency gas turbines, one has solid evidence of their contribution to the greenhouse gas reduction. If coal-fired thermal power plants, with a fuel-to-electricity efficiency of around 33%, are swapped out for combined-cycle power plants with efficiencies on the order of 60%, it will lead to a 70% reduction in carbon emissions per unit of electricity produced.


Mathematics ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 627
Author(s):  
Thanh Dam Mai ◽  
Jaiyoung Ryu

Gas turbines are critical components of combined-cycle power plants because they influence the power output and overall efficiency. However, gas-turbine blades are susceptible to damage when operated under high-pressure, high-temperature conditions. This reduces gas-turbine performance and increases the probability of power-plant failure. This study compares the effects of rotor-blade damage at different locations on their aerodynamic behavior and heat-transfer properties. To this end, we considered five cases: a reference case involving a normal rotor blade and one case each of damage occurring on the pressure and suction sides of the blades’ near-tip and midspan sections. We used the Reynolds-averaged Navier-Stokes equation coupled with the k − ω SST γ turbulence model to solve the problem of high-speed, high-pressure compressible flow through the GE-E3 gas-turbine model. The results reveal that the rotor-blade damage increases the heat-transfer coefficients of the blade and vane surfaces by approximately 1% and 0.5%, respectively. This, in turn, increases their thermal stresses, especially near the rotor-blade tip and around damaged locations. The four damaged-blade cases reveal an increase in the aerodynamic force acting on the blade/vane surfaces. This increases the mechanical stress on and reduces the fatigue life of the blade/vane components.


1978 ◽  
Author(s):  
R. Raj ◽  
S. L. Moskowitz

The future generation is looking forward to the use of gas turbine inlet temperatures as high as 3000 F (1650 C) with attendant thermal efficiencies of from 40 to 50 percent in combined cycle electric power plants. In addition to the use of high temperature for improved efficiency, the national needs, due to scarcity of oil and natural gas, will heavily stress the use of coal as a fuel. The particulate from combustion of coal derived liquid and gaseous fuels, even after employing hot gas cleanup systems, may damage conventional turbine blades and thus reduce turbine life. This paper is intended to show how a transpiration-cooled blade can cope with both of the foregoing problems simultaneously. The fundamental aspects of the transpiration-cooled blade technology will also be explained. Experimental results using this design concept indicate that significant erosion resistance is feasible for gas turbine blading in the near future.


Author(s):  
Steven J. Bossart

The Morgantown Energy Technology Center (METC) of the U.S. Department of Energy (DOE) is actively sponsoring research to develop coal-based power generation systems that use coal more efficiently and economically and with lower emissions than conventional pulverized-coal power plants. Some of the more promising of the advanced coal-based power generation systems are shown in Figure 1: pressurized fluidized-bed combustion combined-cycle (PFBC), integrated gasification combined-cycle (IGCC), and direct coal-fueled turbine (DCFT). These systems rely on gas turbines to produce all or a portion of the electrical power generation. An essential feature of each of these systems is the control of particles at high-temperature and high-pressure (HTHP) conditions. Particle control is needed in all advanced power generation systems to meet environmental regulations and to protect the gas turbine and other major system components. Particles can play a significant role in damaging the gas turbine by erosion, deposition, and corrosion. Erosion is caused by the high-speed impaction of particles on the turbine blades. Particle deposition on the turbine blades can impede gas flow and block cooling air. Particle deposition also contributes to corrosive attack when alkali metal compounds adsorbed on the particles react with the gas turbine blades. Incorporation of HTHP particle control technologies into the advanced power generation systems can reduce gas turbine maintenance requirements, increase plant efficiency, reduce plant capital cost, lower the cost of electricity, reduce wastewater treatment requirements, and eliminate the need for post-turbine particle control to meet New Source Performance Standards (NSPS) for particle emissions.


Author(s):  
Christian Vandervort ◽  
David Leach ◽  
David Walker ◽  
Jerry Sasser

Abstract The power generation industry is facing unprecedented challenges. High fuel costs and increased penetration of renewable power have resulted in greater demand for high efficiency and operational flexibility. Imperatives to reduce carbon footprint place an even higher premium on efficiency. Power producers are seeking highly efficient, reliable, and operationally flexible solutions that provide long-term profitability in a volatile environment. New generation must also be cost-effective to ensure affordability for both domestic and industrial consumers. Gas turbine combined cycle power plants meet these requirements by providing reliable, dispatchable generation with a low cost of electricity, reduced environmental impact, and broad operational flexibility. Start times for large, industrial gas turbine combined cycles are less than 30 minutes from turning gear to full load, with ramp rates from 60 to 88 MW/minute. GE introduced the 7/9HA industrial gas turbine product portfolio in 2014 in response to these demands. These air-cooled, H-class gas turbines (7/9HA) are engineered to achieve greater than 63% net combined cycle efficiency while delivering operational flexibility through deep, emission-compliant turndown and high ramp rates. The largest of these gas turbines, the 9HA.02, is designed to exceed 64% combined cycle efficiency (net, ISO) in a 1×1, single-shaft (SS) configuration. As of December 2018, a total of 32 7/9HA power plants have achieved COD (Commercial Operation Date) while accumulating over 220,000 hours of operation. These plants operate across a variety of demand profiles including base load and load following (intermediate) service. Fleet leaders for both the 7HA and 9HA have exceeded 12,000 hours of operation, with multiple units over 8,000 hours. This paper will address four topics relating to the HA platform: 1) gas turbine product technology, 2) gas turbine validation, 3) integrated power plant commissioning and operating experience, and 4) lessons learned and fleet reliability.


Author(s):  
Michael Welch

Abstract Many parts of the world are facing the triple challenge of providing secure energy to fuel economic growth at an affordable cost while minimizing the impact of energy production on the environment. Island nations especially struggle to address this trilemma, as renewable resources are usually limited and fossil fuels imported. Traditionally such distributed power plants have relied on liquid fuels and multiple open cycle reciprocating engines to provide both redundancy and the ability to load follow across a broad load range to maximize efficiency. This approach has created high electricity prices and significant negative environmental impact, especially that attributed to CO2, NOx, and SOx. With increasing natural gas production, the availability of Liquefied Petroleum Gas (LPG) has grown, and costs have fallen, allowing the potential to switch from fuel oils to LPG to reduce environmental impacts. Energy costs and environmental impact can be further reduced by using high efficiency Gas Turbine Combined Cycle plants with dry low emissions combustion technology. However, a further hurdle facing many locations is lack of the fresh water required for combined cycle operations. LPG-fuelled Gas Turbine Combined Cycle using Organic Rankine Cycle (ORC) technology can address all aspects of this energy trilemma. This paper reviews the conceptual design of a proposed 100MW distributed power plant for an island location, based on multiple LPG-fuelled gas turbines to follow load demand, with an ORC bottoming cycle to maximize efficiency.


Author(s):  
Vikram Muralidharan ◽  
Matthieu Vierling

Power generation in south Asia has witnessed a steep fall due to the shortage of natural gas supplies for power plants and poor water storage in reservoirs for low hydro power generation. Due to the current economic scenario, there is worldwide pressure to secure and make more gas and oil available to support global power needs. With constrained fuel sources and increasing environmental focus, the quest for higher efficiency would be imminent. Natural gas combined cycle plants operate at a very high efficiency, increasing the demand for gas. At the same time, countries may continue to look for alternate fuels such as coal and liquid fuels, including crude and residual oil, to increase energy stability and security. In over the past few decades, the technology for refining crude oil has gone through a significant transformation. With the advanced refining process, there are additional lighter distillates produced from crude that could significantly change the quality of residual oil used for producing heavy fuel. Using poor quality residual fuel in a gas turbine to generate power could have many challenges with regards to availability and efficiency of a gas turbine. The fuel needs to be treated prior to combustion and needs a frequent turbine cleaning to recover the lost performance due to fouling. This paper will discuss GE’s recently developed gas turbine features, including automatic water wash, smart cooldown and model based control (MBC) firing temperature control. These features could significantly increase availability and improve the average performance of heavy fuel oil (HFO). The duration of the gas turbine offline water wash sequence and the rate of output degradation due to fouling can be considerably reduced.


Author(s):  
Reiner Anton ◽  
Brigitte Heinecke ◽  
Michael Ott ◽  
Rolf Wilkenhoener

The availability and reliability of gas turbine units are critical for success to gas turbine users. Advanced hot gas path components that are used in state-of-the-art gas turbines have to ensure high efficiency, but require advanced technologies for assessment during maintenance inspections in order to decide whether they should be reused or replaced. Furthermore, advanced repair and refurbishment technologies are vital due to the complex nature of such components (e.g., Directionally Solidified (DS) / Single Crystal (SC) materials, thin wall components, new cooling techniques). Advanced repair technologies are essential to allow cost effective refurbishing while maintaining high reliability, to ensure minimum life cycle cost. This paper will discuss some aspects of Siemens development and implementation of advanced technologies for repair and refurbishment. In particular, the following technologies used by Siemens will be addressed: • Weld restoration; • Braze restoration processes; • Coating; • Re-opening of cooling holes.


Author(s):  
Lothar Bachmann ◽  
W. Fred Koch

The purpose of this paper is to update the industry on the evolutionary steps that have been taken to address higher requirements imposed on the new generation combined cycle gas turbine exhaust ducting expansion joints, diverter and damper systems. Since the more challenging applications are in the larger systems, we shall concentrate on sizes from nine (9) square meters up to forty (40) square meters in ducting cross sections. (Reference: General Electric Frame 5 through Frame 9 sizes.) Severe problems encountered in gas turbine applications for the subject equipment are mostly traceable to stress buckling caused by differential expansion of components, improper insulation, unsuitable or incompatible mechanical design of features, components or materials, or poor workmanship. Conventional power plant expansion joints or dampers are designed for entirely different operating conditions and should not be applied in gas turbine applications. The sharp transients during gas turbine start-up as well as the very high temperature and high mass-flow operation conditions require specific designs for gas turbine application.


Author(s):  
F. L. Robson ◽  
D. J. Seery

The Department of Energy’s Federal Energy Technology Center (FETC) is sponsoring the Combustion 2000 Program aimed at introducing clean and more efficient advanced technology coal-based power systems in the early 21st century. As part of this program, the United Technologies Research Center has assembled a seven member team to identify and develop the technology for a High Performance Power Systems (HIPPS) that will provide in the near term, 47% efficiency (HHV), and meet emission goals only one-tenth of current New Source Performance Standards for coal-fired power plants. In addition, the team is identifying advanced technologies that could result in HIPPS with efficiencies approaching 55% (HHV). The HIPPS is a combined cycle that uses a coal-fired High Temperature Advanced Furnace (HITAF) to preheat compressor discharge air in both convective and radiant heaters. The heated air is then sent to the gas turbine where additional fuel, either natural gas or distillate, is burned to raise the temperature to the levels of modern gas turbines. Steam is raised in the HITAF and in a Heat Recovery Steam Generator for the steam bottoming cycle. With state-of-the-art frame type gas turbines, the efficiency goal of 47% is met in a system with more than two-thirds of the heat input furnished by coal. By using advanced aeroderivative engine technology, HIPPS in combined-cycle and Humid Air Turbine (HAT) cycle configurations could result in efficiencies of over 50% and could approach 55%. The following paper contains descriptions of the HIPPS concept including the HITAF and heat exchangers, and of the various gas turbine configurations. Projections of HIPPS performance, emissions including significant reduction in greenhouse gases are given. Application of HIPPS to repowering is discussed.


Sign in / Sign up

Export Citation Format

Share Document