Comparison of Operating Characteristics of a Two-Shaft Gas Turbine With a Single-Shaft Gas Turbine for Gas Line Pumping

Author(s):  
M. J. McDonough

Gas turbines are playing an important role in the ever-expanding gas-transportation industry. Coupled to a centrifugal compressor the gas turbine provides a low-cost, flexible prime mover for gas transmission. The two types of gas turbines most commonly used in this field are the single-shaft unit and the two-shaft unit. This paper describes and compares the operating characteristics of each unit along a typical centrifugal-compressor loading line for constant station discharge pressure. Horsepower-speed relationships and specific fuel consumption are considered in this comparison.

Author(s):  
George M. Koutsothanasis ◽  
Anestis I. Kalfas ◽  
Georgios Doulgeris

This paper presents the benefits of the more electric vessels powered by hybrid engines and investigates the suitability of a particular prime-mover for a specific ship type using a simulation environment which can approach the actual operating conditions. The performance of a mega yacht (70m), powered by two 4.5MW recuperated gas turbines is examined in different voyage scenarios. The analysis is accomplished for a variety of weather and hull fouling conditions using a marine gas turbine performance software which is constituted by six modules based on analytical methods. In the present study, the marine simulation model is used to predict the fuel consumption and emission levels for various conditions of sea state, ambient and sea temperatures and hull fouling profiles. In addition, using the aforementioned parameters, the variation of engine and propeller efficiency can be estimated. Finally, the software is coupled to a creep life prediction tool, able to calculate the consumption of creep life of the high pressure turbine blading for the predefined missions. The results of the performance analysis show that a mega yacht powered by gas turbines can have comparable fuel consumption with the same vessel powered by high speed Diesel engines in the range of 10MW. In such Integrated Full Electric Propulsion (IFEP) environment the gas turbine provides a comprehensive candidate as a prime mover, mainly due to its compactness being highly valued in such application and its eco-friendly operation. The simulation of different voyage cases shows that cleaning the hull of the vessel, the fuel consumption reduces up to 16%. The benefit of the clean hull becomes even greater when adverse weather condition is considered. Additionally, the specific mega yacht when powered by two 4.2MW Diesel engines has a cruising speed of 15 knots with an average fuel consumption of 10.5 [tonne/day]. The same ship powered by two 4.5MW gas turbines has a cruising speed of 22 knots which means that a journey can be completed 31.8% faster, which reduces impressively the total steaming time. However the gas turbine powered yacht consumes 9 [tonne/day] more fuel. Considering the above, Gas Turbine looks to be the only solution which fulfills the next generation sophisticated high powered ship engine requirements.


Author(s):  
Adrian W. McAnneny

Three years ago a survey was made of the various prime movers available to the pipeline industry for gas compression. This survey included gas turbines and two and four-cycle reciprocating gas engines. The purpose of this study was to determine which of the existing equipments would be most economical and whether or not there was a need for the development of additional equipment. As a result of this economic study, it appeared there was a definite requirement in the industry for a high-speed, low-cost, gas turbine-centrifugal compressor unit for both field and main-line-station gas compression. As a result of the studies two gas-turbine-driven centrifugal compressor units were placed in operation early in 1960 at Cypress Station near Houston, waste-heat recovery systems being installed in the summer of 1961. Performance tests were satisfactory and subsequently six small gas-engine-driven compressor units have been installed at two main-line compressor stations.


Author(s):  
Henrique E. Cunha ◽  
Konstantinos G. Kyprianidis

Nowadays, the reduction of fuel consumption and pollutant emissions has become a top priority for society and economy. In the past decades, some of the environmental advantages of the gas turbine (such as inherently low CO and unburned HC) have led some car manufacturers to evaluate the potential of this type of engine as prime mover. This paper suggests a strategy to assess the fuel consumption of gas turbines applied in road vehicles. Based on a quasistatic approach, a model was created that can simulate road vehicles powered by gas turbines, and thereafter a comparison was established with reciprocating engines. Within this study, material and turbomachinery technology developments that have taken place in micro gas turbines since the 1960’s have been considered. A 30% efficiency improvement target has been identified with respect to making the gas turbine fuel competitive to a diesel engine powering an SUV. It is the authors’ view that several technologies that could mature sufficiently within the next 10–15 years exist, such as uncooled ceramic turbines. Such technologies could help bridge the fuel efficiency gap in micro gas turbines and make them commercially competitive in the future for low-emissions vehicular applications. Furthermore, the system developed also allows the simulation of hybrid configurations using gas turbines as range extenders, a solution that some car manufacturers consider to be the most promising in the coming years.


1967 ◽  
Vol 89 (1) ◽  
pp. 86-93 ◽  
Author(s):  
Bo R. V. Kumlin

Two gas turbine-powered frigates for the Royal Danish Navy will go on sea trials during 1966. The CODAG propulsion units have good fuel consumption characteristics and light weight. Freewheeling clutches on each prime mover and a controllable pitch propeller have simplified the gear arrangement and the maneuvering procedure. The jet engine-powered gas turbines and the gears are described in some detail in the paper, which ends with a summary of the results from shop tests with the complete propulsion units.


Author(s):  
P. A. Phillips ◽  
Peter Spear

After briefly summarizing worldwide automotive gas turbine activity, the paper analyses the power plant requirements of a wide range of vehicle applications in order to formulate the design criteria for acceptable vehicle gas turbines. Ample data are available on the thermodynamic merits of various gas turbine cycles; however, the low cost of its piston engine competitor tends to eliminate all but the simplest cycles from vehicle gas turbine considerations. In order to improve the part load fuel economy, some complexity is inevitable, but this is limited to the addition of a glass ceramic regenerator in the 150 b.h.p. engine which is described in some detail. The alternative further complications necessary to achieve satisfactory vehicle response at various power/weight ratios are examined. Further improvement in engine performance will come by increasing the maximum cycle temperature. This can be achieved at lower cost by the extension of the use of ceramics. The paper is intended to stimulate the design application of the gas turbine engine.


2021 ◽  
Author(s):  
Zhitao Wang ◽  
Jiayi Ma ◽  
Haichao Yu ◽  
Tielei Li

Abstract The combined gas turbine and gas turbine power propulsion device (COGAG power propulsion device) is an advanced combined power system, which uses multiple gas turbines as the main engine to drive propellers to propel the ship. COGAG power propulsion device has high power density, excellent stability and maneuverability, it receives more and more attention in the field of ship power at home and abroad. This article takes the COGAG power propulsion device as the research object, uses simulation methods to study its steady-state operating characteristics, and conducts a ship-engine-propeller optimization matching analysis based on economy and maneuverability. The research work carried out in this article is as follows. Firstly, according to the structural relationship between the various components and the system thermal cycle mode of the COGAG power propulsion device, establish the controller, main engine, gear box, clutch, shafting, propeller, ship and other components and simulation models of the system with the modular modeling idea. Secondly, divide the gears according to ship speed. For the four working modes of single-gas turbine with load, dual-gas turbine with load, three-gas turbine with load, and four-gas turbine with load, analysis the ship-engine-propeller optimization matching of the COGAG power propulsion device based on economy and maneuverability, and calculate the best shaft speed and propeller pitch ratio in each gear, so as to obtain the steady-state operation characteristics of the COGAG power propulsion device based on the ship-engine-propeller matching, which provides a basis for determining the target parameters of the dynamic process.


2021 ◽  
Author(s):  
Senthil Krishnababu ◽  
Omar Valero ◽  
Roger Wells

Abstract Data driven technologies are revolutionising the engineering sector by providing new ways of performing day to day tasks through the life cycle of a product as it progresses through manufacture, to build, qualification test, field operation and maintenance. Significant increase in data transfer speeds combined with cost effective data storage, and ever-increasing computational power provide the building blocks that enable companies to adopt data driven technologies such as data analytics, IOT and machine learning. Improved business operational efficiency and more responsive customer support provide the incentives for business investment. Digital twins, that leverages these technologies in their various forms to converge physics and data driven models, are therefore being widely adopted. A high-fidelity multi-physics digital twin, HFDT, that digitally replicates a gas turbine as it is built based on part and build data using advanced component and assembly models is introduced. The HFDT, among other benefits enables data driven assessments to be carried out during manufacture and assembly for each turbine allowing these processes to be optimised and the impact of variability or process change to be readily evaluated. On delivery of the turbine and its associated HFDT to the service support team the HFDT supports the evaluation of in-service performance deteriorations, the impact of field interventions and repair and the changes in operating characteristics resulting from overhaul and turbine upgrade. Thus, creating a cradle to grave physics and data driven twin of the gas turbine asset. In this paper, one branch of HFDT using a power turbine module is firstly presented. This involves simultaneous modelling of gas path and solid using high fidelity CFD and FEA which converts the cold geometry to hot running conditions to assess the impact of various manufacturing and build variabilities. It is shown this process can be executed within reasonable time frames enabling creation of HFDT for each turbine during manufacture and assembly and for this to be transferred to the service team for deployment during field operations. Following this, it is shown how data driven technologies are used in conjunction with the HFDT to improve predictions of engine performance from early build information. The example shown, shows how a higher degree of confidence is achieved through the development of an artificial neural network of the compressor tip gap feature and its effect on overall compressor efficiency.


Author(s):  
Daniel E. Caguiat

The Naval Surface Warfare Center, Carderock Division (NSWCCD) Gas Turbine Emerging Technologies Code 9334 was tasked by NSWCCD Shipboard Energy Office Code 859 to research and evaluate fouling resistant compressor coatings for Rolls Royce Allison 501-K Series gas turbines. The objective of these tests was to investigate the feasibility of reducing the rate of compressor fouling degradation and associated rate of specific fuel consumption (SFC) increase through the application of anti-fouling coatings. Code 9334 conducted a market investigation and selected coatings that best fit the test objective. The coatings selected were Sermalon for compressor stages 1 and 2 and Sermaflow S4000 for the remaining 12 compressor stages. Both coatings are manufactured by Sermatech International, are intended to substantially decrease blade surface roughness, have inert top layers, and contain an anti-corrosive aluminum-ceramic base coat. Sermalon contains a Polytetrafluoroethylene (PTFE) topcoat, a substance similar to Teflon, for added fouling resistance. Tests were conducted at the Philadelphia Land Based Engineering Site (LBES). Testing was first performed on the existing LBES 501-K17 gas turbine, which had a non-coated compressor. The compressor was then replaced by a coated compressor and the test was repeated. The test plan consisted of injecting a known amount of salt solution into the gas turbine inlet while gathering compressor performance degradation and fuel economy data for 0, 500, 1000, and 1250 KW generator load levels. This method facilitated a direct comparison of compressor degradation trends for the coated and non-coated compressors operating with the same turbine section, thereby reducing the number of variables involved. The collected data for turbine inlet, temperature, compressor efficiency, and fuel consumption were plotted as a percentage of the baseline conditions for each compressor. The results of each plot show a decrease in the rates of compressor degradation and SFC increase for the coated compressor compared to the non-coated compressor. Overall test results show that it is feasible to utilize anti-fouling compressor coatings to reduce the rate of specific fuel consumption increase associated with compressor performance degradation.


Author(s):  
T. L. Ragland

After industrial gas turbines have been in production for some amount of time, there is often an opportunity to improve or “uprate” the engine’s output power or cycle efficiency or both. In most cases, the manufacturer would like to provide these uprates without compromising the proven reliability and durability of the product. Further, the manufacturer would like the development of this “Uprate” to be low cost, low risk and result in an improvement in “customer value” over that of the original design. This paper describes several options available for enhancing the performance of an existing industrial gas turbine engine and discusses the implications for each option. Advantages and disadvantages of each option are given along with considerations that should be taken into account in selecting one option over another. Specific options discussed include dimensional scaling, improving component efficiencies, increasing massflow, compressor zero staging, increasing firing temperature (thermal uprate), adding a recuperator, increasing cycle pressure ratio, and converting to a single shaft design. The implications on output power, cycle efficiency, off-design performance engine life or time between overhaul (TBO), engine cost, development time and cost, auxiliary requirements and product support issues are discussed. Several examples are provided where these options have been successfully implemented in industrial gas turbine engines.


Author(s):  
K. Nakanishi ◽  
T. Watanabe ◽  
S. Yamazaki

This paper outlines the development process of the centrifugal compressor of the Nissan vehicular gas turbine YTP12 The compressor should provide a solid performance as a component of a vehicular prime mover. As we have managed to achieve the design performance by modifying the components of the compressor within the limited sphere permitted by the dimensions of a given engine, this paper will cover the key processes of improvement, as well as some additional information which may be applicable to future compressor designs.


Sign in / Sign up

Export Citation Format

Share Document