scholarly journals Pressurized Fluidized Bed Coal Combustion Exposure Testing of Gas Turbine and Heat Exchanger Materials

1979 ◽  
Author(s):  
M. S. Nutkis

The Exxon Research pressurized fluidized bed coal combustion pilot plant, known as the miniplant, has been in operation since 1974. Constructed under EPA contract, this facility operates at pressures to 10 atm, bed velocities to 10 ft/sec and temperatures to 1800 F. It can burn 400 lb of coal per hour and has operated for over 2500 test hours. Under a program sponsored by the U. S. Department of Energy, the Exxon pressurized fluidized bed coal combustion miniplant provided a test site and environment for the exposure of specimens of potential PFBCC fireside heat exchanger alloys and gas turbine materials. The intent of these PFBCC exposure tests is to compile a suitable engineering data base for the characterization of the corrosion/erosion behavior of a number of commercially available alloys when exposed to a pressurized fluidized bed coal combustion environment. These PFBCC exposures will provide corrosion/erosion data and comparisons of materials for application to advanced gas turbine/combined cycle type power systems using coal.

Author(s):  
L. H. Russell ◽  
J. Campbell

The U.S. Department of Energy is sponsoring a program of research and development on coal-fired heaters to provide heat input to the working fluid of a closed-cycle gas turbine/cogeneration system. One of the fired heater concepts being researched employs the atmospheric pressure fluidized bed coal combustion concept. This paper describes a research oriented atmospheric fluidized bed of 6- by 6-foot plan dimensions that has been designed and is being constructed for utilization during the R&D program. The design rationale is presented, details of the more significant details are described and discussed, and the planned methods for utilizing the 6- by 6-foot AFB as a research tool are presented.


Author(s):  
A. Robertson ◽  
Zhen Fan ◽  
H. Goldstein ◽  
D. Horazak ◽  
R. Newby ◽  
...  

Research has been conducted under United States Department of Energy (USDOE) Contract DE-AC21-86MC21023 to develop a new type of coal-fired, combined cycle, gas turbine-steam turbine plant for electric power generation. This new type of plant — called a 2nd Generation or Advanced Pressurized Fluidized Bed Combustion (APFB) plant — offers the promise of efficiencies greater than 48 percent (HHV) with both emissions and a cost of electricity that are significantly lower than those of conventional pulverized-coal-fired plants with scrubbers. In the 2nd Generation PFB plant coal is partially gasified in a pressurized fluidized bed reactor to produce a coal derived syngas and a char residue. The syngas fuels the gas turbine and the char fuels a pressurized circulating fluidized bed (PCFB) boiler that powers the steam turbine and supplies hot vitiated air for the combustion of the syngas. A conceptual design and an economic analysis was previously prepared for this plant, all based on the use of a Siemens Westinghouse W501F gas turbine with projected gasifier, PCFB boiler, and gas turbine topping combustor performance data. Having tested these components at a pilot plant scale and observed better than expected performance, the referenced conceptual design has been updated to reflect that test experience and to incorporate more advanced turbines e.g. a Siemens Westinghouse W501G gas turbine and a 2400 psig/1050°F/1050°F/2-1/2 in. Hg steam turbine. This paper presents the performance and economics of the updated plant design along with data on some alternative plant arrangements.


Author(s):  
John Brushwood ◽  
John Foote ◽  
Frank Morton ◽  
Larry Wallace

The Power Systems Development Facility (PSDF) is an engineering scale demonstration of two advanced coal-fired power systems and several high-temperature, high-pressure gas filtration systems. The PSDF was designed at sufficient scale so that advanced power systems and components could be tested in an integrated fashion to provide data for commercial scale-up. The PSDF is funded by the U.S. Department of Energy, Electric Power Research Institute, Southern Company Services, Foster Wheeler, Kellogg Brown & Root, Siemens Westinghouse Power Corporation (SWPC), Combustion Power Company and Peabody Holding Company. The PSDF is configured into two separate test trains: the Kellogg Brown & Root (KBR) transport reactor train and the Foster Wheeler Advanced Pressurized Fluidized Bed Combustor (APFBC) train. The APFBC train also includes a topping combustor and gas turbine generator to produce electrical power. The APFBC train is designed for long term testing of the filtration systems and the assessment of control and integration issues associated with the APFBC system. The Siemens Westinghouse Multi-Annular Swirl Burner (MASB) has been developed as the topping combustor for the APFBC application. In this application, the combustion air is vitiated air, a depleted oxygen (10 to 16 vol %), high temperature (1200 to 1400°F) (650 to 760°C) gas stream, which is the exhaust gas from the fluidized bed combustion of solid fuel. The topping combustor fuel is a synthetic low-Btu fuel gas at high temperature (1200 to 1400°F) (650 to 760°C) generated by gasifying coal in the APFBC. The hot MASB combusted gas is expanded through a gas turbine for power generation. Commissioning of the MASB began in January, 1998. Over 400 hours of operation have been accumulated through November 1999. Several improvements have been designed and installed during commissioning. This paper explains the design basis of the MASB, describes design changes implemented at the PSDF and reviews the operational experience of the MASB at the PSDF.


1983 ◽  
Vol 105 (2) ◽  
pp. 348-353 ◽  
Author(s):  
D. E. Wright ◽  
L. L. Tignac

Rocketdyne is under contract to the Department of Energy for the development of heat exchanger technology that will allow coal to be burned for power generation and cogeneration applications. This effort involves both atmospheric fluidized bed and pulverized coal combustion systems. In addition, the heat exchanger designs cover both metallic and ceramic materials for high-temperature operations. This paper reports on the laboratory and small AFB test results completed to date. It also covers the design and installation of a 6×6 ft atmospheric fluidized bed test facility being used to correlate and expand the knowledge gained from the initial tests. The paper concludes by showing the direction this technology is taking and outlining the steps to follow in subsequent programs.


Author(s):  
Christian L. Vandervort ◽  
Mohammed R. Bary ◽  
Larry E. Stoddard ◽  
Steven T. Higgins

The Externally-Fired Combined Cycle (EFCC) is an attractive emerging technology for powering high efficiency combined gas and steam turbine cycles with coal or other ash bearing fuels. The key near-term market for the EFCC is likely to be repowering of existing coal fueled power generation units. Repowering with an EFCC system offers utilities the ability to improve efficiency of existing plants by 25 to 60 percent, while doubling generating capacity. Repowering can be accomplished at a capital cost half that of a new facility of similar capacity. Furthermore, the EFCC concept does not require complex chemical processes, and is therefore very compatible with existing utility operating experience. In the EFCC, the heat input to the gas turbine is supplied indirectly through a ceramic heat exchanger. The heat exchanger, coupled with an atmospheric coal combustor and auxiliary components, replaces the conventional gas turbine combustor. Addition of a steam bottoming plant and exhaust cleanup system completes the combined cycle. A conceptual design has been developed for EFCC repowering of an existing reference plant which operates with a 48 MW steam turbine at a net plant efficiency of 25 percent. The repowered plant design uses a General Electric LM6000 gas turbine package in the EFCC power island. Topping the existing steam plant with the coal fueled EFCC improves efficiency to nearly 40 percent. The capital cost of this upgrade is 1,090/kW. When combined with the high efficiency, the low cost of coal, and low operation and maintenance costs, the resulting cost of electricity is competitive for base load generation.


Author(s):  
C. F. McDonald

Because of intense development in the aircraft gas turbine field over the last 30 years, the fixed boundary recuperator has received much less development attention than the turbomachinery, and is still proving to be the nemesis of the small gas turbine design engineer. For operation on cheap fuel, such as natural gas, the simple cycle-engine is the obvious choice, but where more expensive liquid fuels are to be burned, the economics of gas turbine operation can be substantially improved by incorporating an efficient, reliable recuperator. For many industrial, vehicular, marine, and utility applications it can be shown that the gas turbine is a more attractive prime mover than either the diesel engine or steam turbine. For some military applications the fuel logistics situation shows the recuperative gas turbine to be the most effective power plant. For small nuclear Brayton cycle space power systems the recuperator is an essential component for high overall plant efficiency, and hence reduced thermal rejection to the environment. Data are presented to show that utilization of compact efficient heat transfer surfaces developed primarily for aerospace heat exchangers, can result in a substantial reduction in weight and volume, for industrial, vehicular, marine, and nuclear gas turbine recuperators. With the increase in overall efficiency of the recuperative cycle (depending on the level of thermal effectiveness, and the size and type of plant), the cost of the heat exchanger can often be paid for in fuel savings, after only a few hundred hours of operation. Heat exchanger surface geometries and fabrication techniques, together with specific recuperator sizes for different applications, are presented. Design, performance, structural, manufacturing, and economic aspects of compact heat exchanger technology, as applied to the gas turbine, are discussed in detail, together with projected future trends in this field.


Author(s):  
Alberto Vannoni ◽  
Andrea Giugno ◽  
Alessandro Sorce

Abstract Renewable energy penetration is growing, due to the target of greenhouse-gas-emission reduction, even though fossil fuel-based technologies are still necessary in the current energy market scenario to provide reliable back-up power to stabilize the grid. Nevertheless, currently, an investment in such a kind of power plant might not be profitable enough, since some energy policies have led to a general decrease of both the average price of electricity and its variability; moreover, in several countries negative prices are reached on some sunny or windy days. Within this context, Combined Heat and Power systems appear not just as a fuel-efficient way to fulfill local thermal demand, but also as a sustainable way to maintain installed capacity able to support electricity grid reliability. Innovative solutions to increase both the efficiency and flexibility of those power plants, as well as careful evaluations of the economic context, are essential to ensure the sustainability of the economic investment in a fast-paced changing energy field. This study aims to evaluate the economic viability and environmental impact of an integrated solution of a cogenerative combined cycle gas turbine power plant with a flue gas condensing heat pump. Considering capital expenditure, heat demand, electricity price and its fluctuations during the whole system life, the sustainability of the investment is evaluated taking into account the uncertainties of economic scenarios and benchmarked against the integration of a cogenerative combined cycle gas turbine power plant with a Heat-Only Boiler.


Author(s):  
H. S. Bloomfield

The potential benefits of solar/fossil hybrid gas turbine power systems were assessed. Both retrofit and new systems were considered from the aspects of: cost of electricity, fuel conservation, operational mode, technology requirements, and fuels flexibility. Hybrid retrofit (repowering) of existing combustion (simple Brayton cycle) turbines can provide near-term fuel savings and solar experience, while new and advanced recuperated or combined-cycle systems may be an attractive fuel saving and economically competitive vehicle to transition from today’s gas- and oil-fired powerplants to other more abundant fuels.


Author(s):  
Rebecca Z. Pass ◽  
Chris F. Edwards

In an effort to make higher efficiency power systems, several joint fuel cell / combustion-based cycles have been proposed and modeled. Mitsubishi Heavy Industries has recently built such a system with a solid-oxide fuel cell gas turbine plant, and is now working on a variant that includes a bottoming steam cycle. They report their double and triple cycles have LHV efficiencies greater than 52% and 70%, respectively. In order to provide insight into the thermodynamics behind such efficiencies, this study attempts to reverse engineer the Mitsubishi Heavy Industries system from publicly available data. The information learned provides the starting point for a computer model of the triple cycle. An exergy analysis is used to compare the triple cycle to its constituent sub-cycles, in particular the natural gas combined cycle. This analysis provides insights into the benefits of integrating the fuel cell and gas turbine architectures in a manner that improves the overall system performance to previously unseen efficiencies.


Author(s):  
Hans Joachim Krautz ◽  
Rolf Chalupnik ◽  
Franz Stuhlmu¨ller

A 200 kWth test plant was constructed by BTU Cottbus for the purpose of developing a special variant of coal conversion based on 2nd generation PFBC. This concept, primarily to be used for generating power from lignite, employs a circulating type fluidized bed and is characterized by a design that combines the two air-blown steps “partial gasification” and “residual char combustion” in a single component. The subject of this paper is to develop an overall power plant concept based on this process, and to perform the associated thermodynamic calculations. In addition to the base concept with one large heavy-duty Siemens gas turbine V94.3A fired with Lausitz dried lignite (19% H2O), further versions with variation of Siemens gas turbine model (V94.3A and V64.3A), the water content of the fuel fired (raw lignite with more than 52% H2O or dried lignite) as well as the method of drying the coal were investigated. Common assumptions for all versions were ISO conditions for the ambient air and a condenser pressure of 0.05 bar. As expected, the calculations yielded very attractive net efficiencies of almost 50% (LHV based) for a variant with the small V64.3A gas turbine and up to more than 55% for the large plants with the V94.3A gas turbine. It was further demonstrated that thermodynamic integration of an advanced, innovative coal drying process (e.g. fluidized-bed drying with waste heat utilization) causes an additional gain in net efficiency of about three percentage points compared with the variant of firing lignite that was first dried externally. In addition to the basic function of the coal conversion system, it was necessary to also assume preconditions such as complete carbon conversion, reliable hot gas cleaning facilities and fuel gas properties that are acceptable for combustion in the gas turbine. Put abstract text here.


Sign in / Sign up

Export Citation Format

Share Document