scholarly journals Sintering Microstructure and Properties of Si3N4 and SiC Based Structural Ceramics

Author(s):  
C. L. Quackenbush ◽  
J. T. Neil ◽  
J. T. Smith

The observed properties of typical sintered ceramic alloys based on Si3N4 and SiC are discussed. Properties result from interaction between various components of the phase assemblage. The pure single phase components are inherently strong because of their covalent bonding but they are unsinterable without densification aids. These aids change composition and microstructure, thus can strongly influence some properties. The effect of composition and microstructure on properties of sintered Si3N4 and SiC based ceramics is described.

2011 ◽  
Vol 492 ◽  
pp. 312-315
Author(s):  
Cheng Zhang ◽  
Na Zhang ◽  
Dan Yu Jiang ◽  
Ling Cong Fan

The high sintering temperatures required for solid-state derived powders is a significant obstacle inhibiting more widespread use of single pure phase BaZrO3with high density. The aim of this research was to reduce the sintering temperature whilst maintaining pure single phase BaZrO3. By using of sintering aid, such as TiO2additive, the pure perovskite BaZrO3powder have been fabricated with the solid state chemistry at 1250°C. Low levels of TiO2(3%) produced the pure BaZrO3particles with the smallest size, and the corresponding sintered ceramic has the density of 95% theoretical using sintering temperature as low as 1550°C. The microstructure of the particular ceramic with full density confirmed that the particle grain in ceramic block have shaped with the less pore and connected thickly.


1992 ◽  
Vol 271 ◽  
Author(s):  
G. Teowee ◽  
J. M. Boulton ◽  
D. R. Uhlmann

ABSTRACTA series of PZT precursor solutions was prepared which incorporated excess PbO to give the composition Pb1+xZr0.53Ti0.47O3+x, where 0 < × < 0.3. These solutions were spin coated on platinized Si wafers and fired at elevated temperatures up to 750C for 30 mins. After crystallization into single-phase perovskite, the films were studied using XRD, optical microscopy and electrical characterization techniques (hysteresis loops and dielectric properties). It was found that the presence of excess PbO significantly improved the PZT films in terms of phase assemblage, microstructure and electrical properties. Under optimized conditions, films with dielectric constants of around 3000 can be obtained.


2007 ◽  
Vol 352 ◽  
pp. 137-146
Author(s):  
Derek P. Thompson

The discovery of sialons in 1971 was a significant step in the history of nitrogen ceramics, because it broadened the field into a wider range of chemistry, and simultaneously increased the flexibility to modify microstructure and properties. During the last 35 years this has resulted in the development of a spectrum of materials, mainly based on the α- and β- structural forms. However, the subject has remained broadly within the scope of structural ceramics. During the 1990s, a range of new sialon derivatives were prepared with a more varied starting chemistry, and the corresponding final materials demonstrated a correspondingly wider variety of structural complexities. In response, many sialon researchers have started to broaden their interests beyond the limiting horizon of structural applications, and considerable progress has been made in the development of transparent and coloured materials, and also derivatives with useful electronic properties.This enlargement of the sialons field is still in its infancy, but promises to generate a much wider spectrum of materials, which can be tailored to meet the increasingly multifunctional requirements of modern day engineering applications.


Author(s):  
S. Mahajan ◽  
M. R. Pinnel ◽  
J. E. Bennett

The microstructural changes in an Fe-Co-V alloy (composition by wt.%: 2.97 V, 48.70 Co, 47.34 Fe and balance impurities, such as C, P and Ni) resulting from different heat treatments have been evaluated by optical metallography and transmission electron microscopy. Results indicate that, on air cooling or quenching into iced-brine from the high temperature single phase ϒ (fcc) field, vanadium can be retained in a supersaturated solid solution (α2) which has bcc structure. For the range of cooling rates employed, a portion of the material appears to undergo the γ-α2 transformation massively and the remainder martensitically. Figure 1 shows dislocation topology in a region that may have transformed martensitically. Dislocations are homogeneously distributed throughout the matrix, and there is no evidence for cell formation. The majority of the dislocations project along the projections of <111> vectors onto the (111) plane, implying that they are predominantly of screw character.


Author(s):  
J. Hanker ◽  
K. Cowden ◽  
R. Noecker ◽  
P. Yates ◽  
N. Georgiade ◽  
...  

Composites of plaster of Paris (PP) and hydroxylapatite (HA) particles are being applied for the surgical reconstruction of craniofacial bone defects and for cosmetic surgery. Two types of HA particles are being employed, the dense sintered ceramic (DHA) and the porous, coralline hydroxylapatite (PHA) particles. Excess water is expressed out of the moistened HA/PP mixture prior to implantation and setting by pressing it in a non-tapered syringe against a glass plate. This results in implants with faster setting times and greater mechanical strengths. It was therefore of interest to compare samples of the compressed versus noncompressed mixtures to see whether or not any changes in their microstructure after setting could be related to these different properties.USG Medical Grade Calcium Sulfate Hemihydrate (which has the lowest mortar consistency of any known plaster) was mixed with an equal weight of Interpore 200 particles (a commercial form of PHA). After moistening with a minimum amount of water, disc-shaped noncompressed samples were made by filling small holes (0.339 in. diameter x 0.053 in. deep) in polypropylene molds with a microspatula.


Author(s):  
J. S. Hanker ◽  
B. L. Giammara

Nonresorbable sintered ceramic hydroxylapatite (HA) is widely employed for filling defects in jaw bone. The small particles used for alveolar ridge augmentation in edentulous patients or for infrabony defects due to periodontal disease tend to scatter when implanted using water or saline as the vehicle. Larger blocks of this material used for filling sockets after tooth extraction don't fit well. Studies in our laboratory where we compared bovine serum albumin, collagen and plaster of Paris as binders to prevent particle scatter during implantation suggested that plaster was most useful for this purpose. In addition to preventing scatter of the particles, plaster enables the formation of implants of any size and.shape either prior to or during surgery. Studies with the PATS reaction have indicated that plaster acts as a scaffold for the incorporation of HA particles into bone in areas where the implant contacts either host bone or periosteum. The shape and integrity of the implant is maintained by the plaster component until it is replaced over a period of days by fibrovascular tissue.


Author(s):  
Edgar S. Etz ◽  
Thomas D. Schroeder ◽  
Winnie Wong-Ng

We are investigating by Raman microprobe measurements the superconducting and related phases in the LnBa2Cu3O7-x (for x=0 to 1) system where yttrium has been replaced by several of the lanthanide (Ln = Nd,Sm,Eu,Ho,Er) elements. The aim is to relate the observed optical spectra (Raman and fluorescence) to the compositional and structural properties of these solids as part of comprehensive materials characterization. The results are correlated with the methods of synthesis, the processing techniques of these materials, and their superconducting properties. Of relevance is the substitutional chemistry of these isostructural systems, the differences in the spectra, and their microanalytical usefulness for the detection of impurity phases, and the assessment of compositional homogeneity. The Raman spectra of most of these compounds are well understood from accounts in the literature.The materials examined here are mostly ceramic powders prepared by conventional solid state reaction techniques. The bulk samples are of nominally single-phase composition as determined by x-ray diffraction.


Author(s):  
L. A. Giannuzzi ◽  
A. S. Ramani ◽  
P. R. Howell ◽  
H. W. Pickering ◽  
W. R. Bitler

The δ phase is a Zn-rich intermetallic, having a composition range of ∼ 86.5 - 92.0 atomic percent Zn, and is stable up to 665°C. The stoichiometry of the δ phase has been reported as FeZn7 and FeZn10 The deviation in stoichiometry can be attributed to variations in alloy composition used by each investigator. The structure of the δ phase, as determined by powder x-ray diffraction, is hexagonal (P63mc or P63/mmc) with cell dimensions a = 1.28 nm, c = 5.76 nm, and 555±8 atoms per unit cell. Later work suggested that the layer produced by hot-dip galvanizing should be considered as two distinct phases which are characterized by their morphological differences, namely: the iron-rich region with a compact appearance (δk) and the zinc-rich region with a columnar or palisade microstructure (δp). The sub-division of the δ phase was also based on differences in diffusion behavior, and a concentration discontinuity across the δp/δk boundary. However, work utilizing Weisenberg photographs on δ single crystals reported that the variation in lattice parameters with composition was small and hence, structurally, the δk phase and the δp phase were the same and should be thought of as a single phase, δ. Bastin et al. determined the average cell dimensions to be a = 1.28 nm and c = 5.71 nm, and suggested that perhaps some kind of ordering process, which would not be observed by x-ray diffraction, may be responsible for the morphological differences within the δ phase.


Author(s):  
G. Mackiewicz Ludtka

Historically, metals exhibit superplasticity only while forming in a two-phase field because a two-phase microstructure helps ensure a fine, stable grain size. In the U-5.8 Nb alloy, superplastici ty exists for up to 2 h in the single phase field (γ1) at 670°C. This is above the equilibrium monotectoid temperature of 647°C. Utilizing dilatometry, the superplastic (SP) U-5.8 Nb alloy requires superheating to 658°C to initiate the α+γ2 → γ1 transformation at a heating rate of 1.5°C/s. Hence, the U-5.8 Nb alloy exhibits an anomolous superplastic behavior.


Author(s):  
J. Fang ◽  
H. M. Chan ◽  
M. P. Harmer

It was Niihara et al. who first discovered that the fracture strength of Al2O3 can be increased by incorporating as little as 5 vol.% of nano-size SiC particles (>1000 MPa), and that the strength would be improved further by a simple annealing procedure (>1500 MPa). This discovery has stimulated intense interest on Al2O3/SiC nanocomposites. Recent indentation studies by Fang et al. have shown that residual stress relief was more difficult in the nanocomposite than in pure Al2O3. In the present work, TEM was employed to investigate the microscopic mechanism(s) for the difference in the residual stress recovery in these two materials.Bulk samples of hot-pressed single phase Al2O3, and Al2O3 containing 5 vol.% 0.15 μm SiC particles were simultaneously polished with 15 μm diamond compound. Each sample was cut into two pieces, one of which was subsequently annealed at 1300° for 2 hours in flowing argon. Disks of 3 mm in diameter were cut from bulk samples.


Sign in / Sign up

Export Citation Format

Share Document