Experimental Measurement of the Vortex Development Downstream of a Lobed Forced Mixer

Author(s):  
Wayne A. Eckerle ◽  
Hamdi Sheibani ◽  
Jean Awad

An experimental study was conducted to investigate the mixing processes downstream of a forced mixer. A forced mixer generates large scale, axial (stirring) vorticity which causes the primary and secondary flow to mix rapidly with low loss. These devices have been successfully used in the past where enhanced mixing of two streams was a requirement. Unfortunately, details of the mixing process associated with these lobed forced mixers are not well understood. Performance sensitivity to design variables has not been documented. An experiment was set up to investigate the mixing processes downstream of a mixer. Air flow was independently supplied to each side of the forced mixer by separate centrifugal blowers. Pressures were measured at the entrance to the lobes with a pitot-static probe to document the characteristics of the approaching boundary layer. Interior mean and fluctuating velocities were nonintrusively measured using a two-component Laser Doppler Velocimetry (LDV) system for velocity ratios of 1:1 and 2:1. The wake structure is shown to display a three step process where initially secondary flow was generated by the mixer lobes, the secondary flow created counter-rotating vortices with a diameter on the order of the convolute width, and then the vortices broke down resulting in a significant increase in turbulent mixing. The results show that the mean secondary motion induced by the lobes effectively circulated the flow passing through the lobes. This motion, however, did not homogeneously mix the two streams. Turbulent mixing in the third step of the mixing process appears to be an important element in the enhanced mixing that has been observed with forced mixers. The length required for the flow to reach this third step is a function of the velocity ratio across the mixer. The results of this investigation indicate that both the mean secondary motion and the turbulent mixing occurring after vortex breakdown need to be considered for prediction of forced mixer performance.

1992 ◽  
Vol 114 (1) ◽  
pp. 63-71 ◽  
Author(s):  
W. A. Eckerle ◽  
H. Sheibani ◽  
J. Awad

An experimental study was conducted to investigate the mixing processes downstream of a forced mixer. A forced mixer generates large-scale, axial (stirring) vorticity, which causes the primary and secondary flow to mix rapidly with low loss. These devices have been successfully used in the past where enhanced mixing of two streams was a requirement. Unfortunately, details of the mixing process associated with these lobed forced mixers are not well understood. Performance sensitivity to design variables has not been documented. An experiment was set up to investigate the mixing processes downstream of a mixer. Air flow was independently supplied to each side of the forced mixer by separate centrifugal blowers. Pressures were measured at the entrance to the lobes with a pitot-static probe to document the characteristics of the approaching boundary layer. Interior mean and fluctuating velocities were nonintrusively measured using a two-component laser-Doppler velocimetry (LDV) system for velocity ratios of 1:1 and 2:1. The wake structure is shown to display a three-step process where initially secondary flow was generated by the mixer lobes, the secondary flow created counterrotating vortices with a diameter on the order of the convolute width, and then the vortices broke down resulting in a significant increase in turbulent mixing. The results show that the mean secondary motion induced by the lobes effectively circulated the flow passing through the lobes. This motion, however, did not homogeneously mix the two streams. Turbulent mixing in the third step of the mixing process appears to be an important element in the enhanced mixing that has been observed with forced mixers. The length required for the flow to reach this third step is a function of the velocity ratio across the mixer. The results of this investigation indicate that both the mean secondary motion and the turbulent mixing occurring after vortex breakdown need to be considered for prediction of forced mixer performance.


1975 ◽  
Vol 97 (3) ◽  
pp. 342-352 ◽  
Author(s):  
J. D. Holdeman ◽  
J. F. Foss

The secondary flow in a low aspect ratio incompressible turbulent bounded jet is described in terms of a near, middle, and far field in which the secondary motion is initiated, developed, and decayed, respectively. The initiation of the secondary flow is explained by the distortion of the planar vortex loops which bound the jet at the exit plane. In the region away from the bounding plates, the vortex loop distortion is similar to that found in rectangular free jets; however, the bounding plates cause an additional production of streamwise vorticity near the plates which has no counterpart in the free jet flow. Downstream of the jet core region, a large-scale secondary flow develops from this vorticity. Farther downstream the secondary flow decays; the resultant flow may be characterized as a combination of a plane jet and boundary layer flows. This explanation is supported by the vorticity and velocity data of this investigation. Velocity measurements of this study are sufficiently comprehensive to allow formulation and evaluation of several quantitative measures of the secondary flow strength. The average (over a transverse plane) momentum flux thickness, and the far field behavior show the secondary flow to be dynamically passive. Properly nondimensionalized transverse velocity profiles exhibit characteristic distortions from a basically “self-similar” shape from which the center of the secondary flow rotation can be determined. Integrals of the velocity data allow the inference of mass transport across planes parallel to the bounding plates.


2014 ◽  
Vol 741 ◽  
pp. 156-199 ◽  
Author(s):  
K. Oberleithner ◽  
C. O. Paschereit ◽  
I. Wygnanski

AbstractSpatial linear stability analysis is applied to the mean flow of a turbulent swirling jet at swirl intensities below the onset of vortex breakdown. The aim of this work is to predict the dominant coherent flow structure, their driving instabilities and how they are affected by swirl. At the nozzle exit, the swirling jet promotes shear instabilities and, less unstable, centrifugal instabilities. The latter stabilize shortly downstream of the nozzle, contributing very little to the formation of coherent structures. The shear mode remains unstable throughout generating coherent structures that scale with the axial shear-layer thickness. The most amplified mode in the nearfield is a co-winding double-helical mode rotating slowly in counter-direction to the swirl. This gives rise to the formation of slowly rotating and stationary large-scale coherent structures, which explains the asymmetries in the mean flows often encountered in swirling jet experiments. The co-winding single-helical mode at high rotation rate dominates the farfield of the swirling jet in replacement of the co- and counter-winding bending modes dominating the non-swirling jet. Moreover, swirl is found to significantly affect the streamwise phase velocity of the helical modes rendering this flow as highly dispersive and insensitive to intermodal interactions, which explains the absence of vortex pairing observed in previous investigations. The stability analysis is validated through hot-wire measurements of the flow excited at a single helical mode and of the flow perturbed by a time- and space-discrete pulse. The experimental results confirm the predicted mode selection and corresponding streamwise growth rates and phase velocities.


Author(s):  
Richard Bergman ◽  
Alexander Efremov ◽  
Pierre Woehl

Mixing of fluids is a common and often critical step in microfluidic systems. In typical large scale processes turbulence greatly speeds the mixing process. At the mini and micro-scales, however, the flow is laminar and the benefits of turbulent mixing are not present. Mixing at the mini- and micro-scales tends to become a more highly engineered process of bringing fluids together in predictable ways to achieve a predetermined and acceptable level of mixing. This paper summarizes a numerical analysis of the mixing performance of a vaned circular micromixer. A newly developed mixing metric suitable for reacting fluids is developed for this study. Applying the basic steps of stretching, cutting, and stacking to effect mixing, a useful micromixer is analyzed numerically for its mixing efficiency. A parametric study of flow and viscosity indicate that a flow Re of 12 or higher is sufficient to achieve effective and rapid mixing in this device.


2010 ◽  
Vol 156-157 ◽  
pp. 1644-1648
Author(s):  
Chin Chi Cheng ◽  
Shao Chung Cheng ◽  
Chi Huang Lu

The objective of this study is to investigate the effect of ultrasonic reflection echo during polymer mixing process in the internal mixer. Phase change from solid to liquid, partially melted pellets, and distributing progress of CaCO3 powder during the melting process of low density polyethylene (LDPE) and the mixing process of the melted LDPE with a calcium carbonate (CaCO3) powder were successfully monitored by ultrasound. Melting and mixing completions were determined when ultrasonic reflection echo reached its upper stable level. The mixing period was proportional to the mass of added CaCO3 powder. The mean peak value of ultrasonic reflection L2f echo at the upper stable level decreased when the total amount of added CaCO3 powder increased. The presented ultrasonic technique can be utilized to optimize the melting and mixing processes, reduce cost and evaluate melting and mixing quality.


Author(s):  
Pierre Aillaud ◽  
Florent Duchaine ◽  
Laurent Gicquel

In an attempt to improve our understanding of the fundamental flow problem that is an impinging jet, a wall-resolved Large Eddy Simulation (LES) is produced to investigate large-scale unsteady flow features, mixing processes near the wall and heat transfer. The simulation focuses on a single unconfined round jet normally impinging on a flat plate at a Reynolds number (based on the pipe diameter and bulk velocity) of Re = 23 000 and for a nozzle to plate distance of H = 2D. This configuration is known to lead to a double peak in the Nusselt distribution. Evaluation of the high order statistics, such as Skewness and Kurtosis of the temporal evolution of axial velocity and wall heat flux, provides first-ever insights into the effect of the vortical structures on the mean wall heat transfer. Heat transfer statistics such as probability density functions (PDF) confirm the ability of LES to reproduce the strong intermittent thermal events responsible for the increase of the mean wall heat transfer radial distribution. Axial velocity and temperature temporal distributions are analysed simultaneously to gain further insight into the mixing process near the wall. In particular, the probabilities of the different cold/hot fluid ejection/injection events prove that the strong intermittent thermal events are linked to a change in the mixing behavior induced by the passage of the large-scale vortical structures. These structures are found to preferentially produce a cold fluid flux towards the wall leading to the local heat transfer enhancement usually identified by the secondary peak.


1993 ◽  
Vol 115 (4) ◽  
pp. 620-626 ◽  
Author(s):  
W. R. Usry ◽  
J. A. C. Humphrey ◽  
R. Greif

Time-resolved measurements of the circumferential velocity component were obtained with a laser-Doppler velocimeter in the space between the center pair of four disks corotating in air in an axisymmetric cylindrical enclosure. The separate influences on the flow of two obstructions of similar shapes but having different lengths were investigated. The results show that both obstructions significantly alter the mean and rms distributions of velocity in quantitatively different but qualitatively similar ways. Both obstructions also alter the characteristic frequencies of flow oscillations associated with large scale motions present in the flow, apparently of the type that arise in unobstructed configurations. The measurements suggest that an obstruction can induce bimodal states of motion over frequency ranges that depend on the obstruction’s length. The presence of an obstruction increases the strength of the cross-stream secondary motion in the inter-disk space by redirecting fluid moving in the circumferential direction towards the radial direction. While this reduced the magnitude of the velocity deficit in the obstruction wake, for the cases investigated the flow did not recover within one revolution from the effects of either obstruction.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1021
Author(s):  
Bernhard Dorweiler ◽  
Pia Elisabeth Baqué ◽  
Rayan Chaban ◽  
Ahmed Ghazy ◽  
Oroa Salem

As comparative data on the precision of 3D-printed anatomical models are sparse, the aim of this study was to evaluate the accuracy of 3D-printed models of vascular anatomy generated by two commonly used printing technologies. Thirty-five 3D models of large (aortic, wall thickness of 2 mm, n = 30) and small (coronary, wall thickness of 1.25 mm, n = 5) vessels printed with fused deposition modeling (FDM) (rigid, n = 20) and PolyJet (flexible, n = 15) technology were subjected to high-resolution CT scans. From the resulting DICOM (Digital Imaging and Communications in Medicine) dataset, an STL file was generated and wall thickness as well as surface congruency were compared with the original STL file using dedicated 3D engineering software. The mean wall thickness for the large-scale aortic models was 2.11 µm (+5%), and 1.26 µm (+0.8%) for the coronary models, resulting in an overall mean wall thickness of +5% for all 35 3D models when compared to the original STL file. The mean surface deviation was found to be +120 µm for all models, with +100 µm for the aortic and +180 µm for the coronary 3D models, respectively. Both printing technologies were found to conform with the currently set standards of accuracy (<1 mm), demonstrating that accurate 3D models of large and small vessel anatomy can be generated by both FDM and PolyJet printing technology using rigid and flexible polymers.


2020 ◽  
Vol 72 (1) ◽  
Author(s):  
Chao Xiong ◽  
Claudia Stolle ◽  
Patrick Alken ◽  
Jan Rauberg

Abstract In this study, we have derived field-aligned currents (FACs) from magnetometers onboard the Defense Meteorological Satellite Project (DMSP) satellites. The magnetic latitude versus local time distribution of FACs from DMSP shows comparable dependences with previous findings on the intensity and orientation of interplanetary magnetic field (IMF) By and Bz components, which confirms the reliability of DMSP FAC data set. With simultaneous measurements of precipitating particles from DMSP, we further investigate the relation between large-scale FACs and precipitating particles. Our result shows that precipitation electron and ion fluxes both increase in magnitude and extend to lower latitude for enhanced southward IMF Bz, which is similar to the behavior of FACs. Under weak northward and southward Bz conditions, the locations of the R2 current maxima, at both dusk and dawn sides and in both hemispheres, are found to be close to the maxima of the particle energy fluxes; while for the same IMF conditions, R1 currents are displaced further to the respective particle flux peaks. Largest displacement (about 3.5°) is found between the downward R1 current and ion flux peak at the dawn side. Our results suggest that there exists systematic differences in locations of electron/ion precipitation and large-scale upward/downward FACs. As outlined by the statistical mean of these two parameters, the FAC peaks enclose the particle energy flux peaks in an auroral band at both dusk and dawn sides. Our comparisons also found that particle precipitation at dawn and dusk and in both hemispheres maximizes near the mean R2 current peaks. The particle precipitation flux maxima closer to the R1 current peaks are lower in magnitude. This is opposite to the known feature that R1 currents are on average stronger than R2 currents.


2021 ◽  
Vol 7 (2) ◽  
pp. 20
Author(s):  
Carlos Lassance ◽  
Yasir Latif ◽  
Ravi Garg ◽  
Vincent Gripon ◽  
Ian Reid

Vision-based localization is the problem of inferring the pose of the camera given a single image. One commonly used approach relies on image retrieval where the query input is compared against a database of localized support examples and its pose is inferred with the help of the retrieved items. This assumes that images taken from the same places consist of the same landmarks and thus would have similar feature representations. These representations can learn to be robust to different variations in capture conditions like time of the day or weather. In this work, we introduce a framework which aims at enhancing the performance of such retrieval-based localization methods. It consists in taking into account additional information available, such as GPS coordinates or temporal proximity in the acquisition of the images. More precisely, our method consists in constructing a graph based on this additional information that is later used to improve reliability of the retrieval process by filtering the feature representations of support and/or query images. We show that the proposed method is able to significantly improve the localization accuracy on two large scale datasets, as well as the mean average precision in classical image retrieval scenarios.


Sign in / Sign up

Export Citation Format

Share Document