Design and Test of a Small, High-Pressure Ratio, Axial Compressor with Tandem and Swept Stators

1972 ◽  
Author(s):  
Charles J. Paine
Author(s):  
K.-L. Tzuoo ◽  
S. S. Hingorani ◽  
A. K. Sehra

Recent trend toward lightweight, compact compression systems for advanced aircraft gas turbine engines has created a need for very high pressure ratio fan and compressor stages. One way of achieving pressure ratio in excess of 3:1 in an axial blade row is to introduce splitters (partial vanes) between the principal blades, a concept pioneered by Wennerstrom during early 70s for application in a 3:1 pressure ratio single axial stage. This paper presents an advanced methodology for high pressure ratio splittered rotor design. The methodology centers around combining a meridional flow calculation, an arbitrary meanline blade generation procedure, and 3-D inviscid and viscous analyses. Methods for specifying work distribution, solidity, loss, and deviation distributions, as well as the airfoil generation and splitter vane placement are discussed in detail. Importance of 3-D viscous effects along with results from a 3-D viscous calculation for Wennerstrom’s splittered rotor are also presented.


Author(s):  
Allan D. Grosvenor ◽  
David A. Taylor ◽  
Jonathan R. Bucher ◽  
Michael J. Aarnio ◽  
Paul M. Brown ◽  
...  

The testing of an 8:1 pressure ratio supersonic single axial compressor rotor referred to as Rampressor-2 is described. Design of this shockwave compression system is based on principles employed for supersonic intakes consisting of a multi-shock compression system and boundary layer treatment. The rotor consists of three blade passages within which the shock system is produced by a ramp, throat and diffuser contoured on the hub. The technology has been previously demonstrated in a 2.3:1 pressure ratio experimental test compressor (Rampressor-1). Measured performance is compared with numerical predictions. Further developments to improve Rampressor performance are discussed, and the appropriateness of this technology for Carbon Capture & Sequestration and LNG applications is highlighted.


2013 ◽  
Vol 56 (6) ◽  
pp. 1361-1369 ◽  
Author(s):  
XinQian Zheng ◽  
Yun Lin ◽  
BinLin Gan ◽  
WeiLin Zhuge ◽  
YangJun Zhang

Author(s):  
Hideaki Tamaki

Centrifugal compressors used for turbochargers need to achieve a wide operating range. The author has developed a high pressure ratio centrifugal compressor with pressure ratio 5.7 for a marine use turbocharger. In order to enhance operating range, two different types of recirculation devices were applied. One is a conventional recirculation device. The other is a new one. The conventional recirculation device consists of an upstream slot, bleed slot and the annular cavity which connects both slots. The new recirculation device has vanes installed in the cavity. These vanes were designed to provide recirculation flow with negative preswirl at the impeller inlet, a swirl counterwise to the impeller rotational direction. The benefits of the application of both of the recirculation devices were ensured. The new device in particular, shifted surge line to a lower flow rate compared to the conventional device. This paper discusses how the new recirculation device affects the flow field in the above transonic centrifugal compressor by using steady 3-D calculations. Since the conventional recirculation device injects the flow with positive preswirl at the impeller inlet, the major difference between the conventional and new recirculation device is the direction of preswirl that the recirculation flow brings to the impeller inlet. This study focuses on two effects which preswirl of the recirculation flow will generate. (1) Additional work transfer from impeller to fluid. (2) Increase or decrease of relative Mach number. Negative preswirl increases work transfer from the impeller to fluid as the flow rate reduces. It increases negative slope on pressure ratio characteristics. Hence the recirculation flow with negative preswirl will contribute to stability of the compressor. Negative preswirl also increases the relative Mach number at the impeller inlet. It moves shock downstream compared to the conventional recirculation device. It leads to the suppression of the extension of blockage due to the interaction of shock with tip leakage flow.


Author(s):  
K. R. Pullen ◽  
N. C. Baines ◽  
S. H. Hill

A single stage, high speed, high pressure ratio radial inflow turbine was designed for a single shaft gas turbine engine in the 200 kW power range. A model turbine has been tested in a cold rig facility with correct simulation of the important non-dimensional parameters. Performance measurements over a wide range of operation were made, together with extensive volute and exhaust traverses, so that gas velocities and incidence and deviation angles could be deduced. The turbine efficiency was lower than expected at all but the lowest speed. The rotor incidence and exit swirl angles, as obtained from the rig test data, were very similar to the design assumptions. However, evidence was found of a region of separation in the nozzle vane passages, presumably caused by a very high curvature in the endwall just upstream of the vane leading edges. The effects of such a separation are shown to be consistent with the observed performance.


Author(s):  
Senthil Krishnababu ◽  
Vili Panov ◽  
Simon Jackson ◽  
Andrew Dawson

Abstract In this paper, research that was carried out to optimise an initial variable guide vane schedule of a high-pressure ratio, multistage axial compressor is reported. The research was carried out on an extensively instrumented scaled compressor rig. The compressor rig tests carried out employing the initial schedule identified regions in the low speed area of the compressor map that developed rotating stall. Rotating stall regions that caused undesirable non-synchronous vibration of rotor blades were identified. The variable guide vane schedule optimisation carried out balancing the aerodynamic, aero-mechanical and blade dynamic characteristics gave the ‘Silent Start’ variable guide vane schedule, that prevented the development of rotating stall in the start regime and removed the non-synchronous vibration. Aerodynamic performance and aero-mechanical characteristics of the compressor when operated with the initial schedule and the optimised ‘Silent Start’ schedule are compared. The compressor with the ‘Silent Start’ variable guide vane schedule when used on a twin shaft engine reduced the start time to minimum load by a factor of four and significantly improved the operability of the engine compared to when the initial schedule was used.


Sign in / Sign up

Export Citation Format

Share Document