scholarly journals Status of the Industrial Applications of the Active Magnetic Bearings Technology

Author(s):  
Michel Dussaux

This paper recalls the principle, technology, basic data and typical advantages of the active magnetic bearing. Then it focuses on the main industrial applications of the active magnetic bearings and the status of these applications by the end of 1989.

2014 ◽  
Vol 494-495 ◽  
pp. 685-688
Author(s):  
Rong Gao ◽  
Gang Luo ◽  
Cong Xun Yan

Active magnetic bearing (AMB) system is a complex integrated system including mechanics, electronic and magnetism. In order to research for the basic dynamic characteristic of rotor supported by AMB, it is necessary to present mathematics method. The dynamics formula of AMB is established using theory means of dynamics of rotator and mechanics of vibrations. At the same tine, the running stability of rotor is analyzed and the example is presented in detail.


2019 ◽  
Vol 2019 ◽  
pp. 1-19 ◽  
Author(s):  
Anna Tangredi ◽  
Enrico Meli ◽  
Andrea Rindi ◽  
Alessandro Ridolfi ◽  
Pierluca D’Adamio ◽  
...  

Nowadays, the search for increasing performances in turbomachinery applications has led to a growing utilization of active magnetic bearings (AMBs), which can bring a series of advantages thanks to their features: AMBs allow the machine components to reach higher peripheral speeds; in fact there are no wear and lubrication problems as the contact between bearing surfaces is absent. Furthermore, AMBs characteristic parameters can be controlled via software, optimizing machine dynamics performances. However, active magnetic bearings present some peculiarities, as they have lower load capacity than the most commonly used rolling and hydrodynamic bearings, and they need an energy source; for these reasons, in case of AMBs overload or breakdown, an auxiliary bearing system is required to support the rotor during such landing events. During the turbomachine design process, it is fundamental to appropriately choose the auxiliary bearing type and characteristics, because such components have to resist to the rotor impact; so, a supporting design tool based on accurate and efficient models of auxiliary bearings is very useful for the design integration of the Active Magnetic Bearing System into the machine. This paper presents an innovative model to accurately describe the mechanical behavior of a complete rotor-dynamic system composed of a rotor equipped with two auxiliary rolling bearings. The model, developed and experimentally validated in collaboration with Baker Hughes a GE company (providing the test case and the experimental data), is able to reproduce the key physical phenomena experimentally observed; in particular, the most critical phenomenon noted during repeated experimental combined landing tests is the rotor forward whirl, which occurs in case of high friction conditions and greatly influences the whole system behavior. In order to carefully study some special phenomena like rotor coast down on landing bearings (which requires long period of time to evolve and involves many bodies and degrees of freedom) or other particular events like impacts (which occur in a short period of time), a compromise between accuracy of the results and numerical efficiency has been pursued. Some of the elements of the proposed model have been previously introduced in literature; however the present work proposes some new features of interest. For example, the lateral and the axial models have been properly coupled in order to correctly reproduce the effects observed during the experimental tests and a very important system element, the landing bearing compliant suspension, has been properly modelled to more accurately describe its elastic and damping effects on the system. Furthermore, the model is also useful to characterize the frequencies related to the rotor forward whirl motion.


Author(s):  
Bruno Wagner

This paper recalls the principles and main features of the active magnetic bearings and especially the advantages for turbomachines. Oil-free working and vibration control are part of them. Field experiences are described for different shaft line configurations. Step by step we are going to get totally rid of oil with the introduction of active magnetic bearings together with dry gas seals and gearless drive. Future machines will take the benefit of all this field experience. The trend of the design optimization is the active magnetic bearings in the process gas itself, for a length reduction of shafts. But at the present stage, the active magnetic bearing is a proven technology today.


Author(s):  
E. G. Foster ◽  
V. Kulle ◽  
R. A. Peterson

The installation and operation of an active magnetic bearing in conjunction with a modified mechanical dry gas seal on a natural gas pipeline compressor is presented. The emphasis of this paper is centered on the active magnetic bearing. The active magnetic bearing was developed by Société de Mécanique Magnétique (S2M) of Vernon France. The first successful application to a natural gas pipeline compressor was a co-operative effort between NOVA, AN ALBERTA CORPORATION, S2M, and Magnetic Bearing Incorporated (MBI) of Radford, Virginia. This paper represents a technical and economic assessment of the bearing, including installation and operational data.


2020 ◽  
Vol 40 (2) ◽  
pp. 112-123
Author(s):  
Adis Muminovic ◽  
Sanjin Braut ◽  
Adil Muminovic ◽  
Isad Saric ◽  
Goranka Štimac Rončević

Proportional–integral–derivative (PID) control is the most common control approach used to control active magnetic bearings system, especially in the case of supporting rigid rotors. In the case of flexible rotor support, the most common control is again PID control in combination with notch filters. Other control approaches, known as modern control theory, are still in development process and cannot be commonly found in real life industrial application. Right now, they are mostly used in research applications. In comparison to PID control, PI-D control implies that derivate element is in feedback loop instead in main branch of the system. In this paper, performances of flexible rotor/active magnetic bearing system were investigated in the case of PID and PI-D control, both in combination with notch filters. The performances of the system were analysed using an analysis in time domain by observing system response to step input and in frequency domain by observing a frequency response of sensitivity function.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Seong-yeol Yoo ◽  
Myounggyu D. Noh

Active magnetic bearings consume much less power than conventional passive bearings, especially when power-minimizing controllers are employed. Several power-minimizing controllers have been proposed, such as variable bias controllers and switching controllers. In this paper, we present an appraisal of the power-minimizing control algorithms for active magnetic bearings in an attempt to provide an objective guideline on the merits of the control algorithms. In order for the appraisal, we develop an unified and consistent model of active magnetic bearing systems. The performances of the power-minimizing controllers are assessed through this model. The results show that the power-minimizing controllers indeed save considerable power when the machine state is relatively steady. However, a simple proportional-derivative type controller is on a par with the much more complex power-minimizing controllers in terms of power consumption when the machine is experiencing transient loads.


2012 ◽  
Vol 252 ◽  
pp. 51-55
Author(s):  
Zhen Yu Xie ◽  
Hong Kai Zhou ◽  
Xiao Wang

The magnetic damper was introduced into the high speed rotating machinery to restrain the vibration of the rotor supported by active magnetic bearings. The experimental setup, which was made up of one rotor, two radial active magnetic bearings, one axial active magnetic bearing, one magnetic damper and control system, was built to investigate the effects of the magnetic damper locations on dynamic characteristics of the system by theoretical analysis, experimental modal analysis and actual operation of the system. The results show that the vibration of the active magnetic bearing system operating at the modal frequency can be reduced more effectively if the magnetic damper is located far from the nodes of the corresponding mode shape.


Author(s):  
Dongxiong Wang ◽  
Nianxian Wang ◽  
Kuisheng Chen

The magnetic suspended dual-rotor system applied in more electric aero-engine can eliminate the wear and lubrication system of mechanical bearings and solve the vibration control issue of system effectively, which provides the possibility to improve the performance of aero-engine significantly. This research focuses on the unbalance response of the magnetic suspended dual-rotor system. First, a structure of dual-rotor system supported by two active magnetic bearings and two permanent magnetic bearings is presented. With proportional derivative (PD) control adopted, the bearing characteristics of active magnetic bearings are modeled as the equivalent stiffness and equivalent damping, and the permanent magnetic bearings are modeled as elastic support. Then, the Riccati transfer matrix method with good numerical stability is used to establish the model of the magnetic suspended dual-rotor system unbalance response. Subsequently, the validity of the present formulation has been tested against some known results available in literature and the simulation results obtained by finite element method (FEM). Finally, the dynamic characteristics of the unbalance response are investigated. The results reveal that the influence of the inner rotor imbalance excitation on the magnetic suspended dual-rotor system unbalance response is much larger than that of the outer rotor imbalance excitation. In addition, the critical speeds increase with the proportional coefficient, and the derivative coefficient can affect the amplitudes of the unbalance response, but not critical speeds. From the perspectives of the maximum bearing capacity and maximum displacement of active magnetic bearing-rotor system, the possibility of the magnetic suspended dual-rotor system safely crossing the critical speeds of the first three orders is investigated.


2020 ◽  
pp. 107754632093373
Author(s):  
Felipe Carmo Carvalho ◽  
Marcus V Fernandes de Oliveira ◽  
Fabian A Lara-Molina ◽  
Aldemir A Cavalini ◽  
Valder Steffen

The technology associated with active magnetic bearings has been widely used in the last years and can be considered as being one of the most promising solutions for several applications in rotating machinery. Lubricants are not necessary, and high rotation speeds are reached without any relevant heating. Active magnetic bearings are classified as mechatronic systems because they are composed of mechanical and electronic parts that are controlled by using dedicated software. In this context, the present work is devoted to the design of robust controllers applied to supercritical rotors supported by active magnetic bearings. For this aim, numerical and experimental tests were carried out. Different from previous studies reported in the literature, the present contribution proposes a novel design procedure to robustify the neuro-fuzzy controller of a rotor supported by active magnetic bearings based on optimal robust design. This optimal design procedure tunes the robust neuro-fuzzy controller taking into account the optimal balance between vibration attenuation performance and robustness, that is the increase in vibration attenuation implies the reduction in the robustness. The first stage of the controller synthesis is dedicated to the specification of all design requirements. Then, the adaptative neuro-fuzzy controller was obtained, starting from the determination of the plant dominant poles and finally performing the model-based analysis of the system stability and performance. Finally, the vibration control performance and robustness are optimally balanced by using a robust optimization procedure. The behavior of the controller was evaluated by investigating the unbalance response of the rotating system. The obtained results demonstrated the effectiveness of the conveyed approach.


Proceedings ◽  
2020 ◽  
Vol 64 (1) ◽  
pp. 25
Author(s):  
Yefa Hu ◽  
Kezhen Yang ◽  
Xinhua Guo ◽  
Jian Zhou ◽  
Huachun Wu

A switching power amplifier is a key component of the actuator of an active magnetic bearing, and its reliability has an important impact on the performance of a magnetic bearing system. This paper analyzes the topologies of a switching power amplifier of an active magnetic bearing. In the case of different coil pair arrangements and bias current distributions, comprehensive evaluation of the different topologies of switching power amplifiers is introduced. This evaluation has a guiding role in the design of a switching power amplifier of an active magnetic bearing.


Sign in / Sign up

Export Citation Format

Share Document