scholarly journals A Calculation Procedure for Three-Dimensional Turbulent Flow in a Centrifugal Impeller With any Blade Geometry

1991 ◽  
Author(s):  
Xi Guang ◽  
Wang Shangjin ◽  
Miao Yongmiao

A method for calculating 3–D turbulent flow in a centifugal impeller is developed by solving the incompressible, steady, time averaged N–S equation in general curvilinear coordinates. The K–ε two–equation turbulence model is utilized to describe Reynolds stresses. A calculation scheme is proposed which divides a centrifugal compressor impeller into three calculation zones, i.e. the inlet zone, the channel zone, and the exit–vaneless diffuser zone. A simple and time–saving method for generating 3–D body–fitted coordinate system of a centrifugal impeller is established by means of combining an algebraic transformation with the solution of 2–D elliptic partial differential equations. This method is applied to calculate the turbulent flow in an industrial centrifugal compressor impeller. The tendency of the “jet–wake” formation and growth in the impeller can be clearly seen, and the secondary flow pattern calculated is similar to Eckardt’s measurements. The calculation results at the impeller exit are also in good agreement with the experimental results performed by the authors.

Author(s):  
Alain Demeulenaere ◽  
Olivier Léonard ◽  
René Van den Braembussche

The use of a three-dimensional Euler inverse method for the design of a centrifugal impeller is demonstrated. Both the blade shape and the endwalls are iteratively designed. The meridional contour is modified in order to control the mean velocity level in the blade channel, while the blade shape is designed to achieve a prescribed loading distribution between the inlet and the outlet. The method salves the time dependent Euler equations in a numerical domain of which some boundaries (the blades or the endwalls) move and change shape during the transient part of the computation, until a prescribed pressure distribution is achieved on the blade surfaces. The method is applied to the design of a centrifugal compressor impeller, whose hub endwall and blade surfaces are modified by the inviscid inverse method. The real performance of both initial and modified geometries are compared through three-dimensional Navier-Stokes computations.


Author(s):  
Kiyotaka Hiradate ◽  
Hiromi Kobayashi ◽  
Takahiro Nishioka

This study experimentally and numerically investigates the effect of application of curvilinear element blades to fully-shrouded centrifugal compressor impeller on the performance of centrifugal compressor stage. Design suction flow coefficient of compressor stage investigated in this study is 0.125. The design guidelines for the curvilinear element blades which had been previously developed was applied to line element blades of a reference conventional impeller and a new centrifugal compressor impeller with curvilinear element blades was designed. Numerical calculations and performance tests of two centrifugal compressor stages with the conventional impeller and the new one were conducted to investigate the effectiveness of application of the curvilinear element blades and compare the inner flowfield in details. Despite 0.5% deterioration of the impeller efficiency, it was confirmed from the performance test results that the compressor stage with the new impeller achieved 1.7% higher stage efficiency at the design point than that with the conventional one. Moreover, it was confirmed that the compressor stage with the new impeller achieved almost the same off-design performance as that of the conventional stage. From results of the numerical calculations and the experiments, it is considered that this efficiency improvement of the new stage was achieved by suppression of the secondary flows in the impeller due to application of negative tangential lean. The suppression of the secondary flows in the impeller achieved uniformalized flow distribution at the impeller outlet and increased the static pressure recovery coefficient in the vaneless diffuser. As a result, it is thought that the total pressure loss was reduced downstream of the vaneless diffuser outlet in the new stage.


1979 ◽  
Vol 193 (1) ◽  
pp. 341-347
Author(s):  
A. Goulas ◽  
R. C. Baker

Hot wire measurements at the exit of a small centrifugal compressor impeller are reported. Three different hot wire readings were obtained and stored on a magnetic tape for each point by gating the analogue hot wire signal with a pulse which indicated circumferential position. The combination of the three readings yielded the mean velocity and some Reynolds stresses at each point. The measurements show a ‘jet-wake’ profile towards the shroud and ‘isentropic’ flow near the hub.


1982 ◽  
Author(s):  
M. W. Johnson ◽  
J. Moore

Three-dimensional flows and their influence on the stagnation pressure losses in a centrifugal compressor impeller have been studied. All 3 mutally perpendicular components of relative velocity and stagnation pressure on 5 cross-sectional planes, between the inlet and outlet of a 1 m dia shrouded impeller running at 500 rpm were measured. Comparisons were made between results for a flow rate corresponding to nearly zero incidence angle and two other flows, with increased and reduced flow rates. These detailed measurements show how the position of separation of the shroud boundary layer moved downstream and the wake’s size decreased, as the flow rate was increased. The wake’s location, at the outlet of the impeller, was also observed to move from the suction surface at the lowest flow rate, to the shroud at higher flow rates.


1990 ◽  
Vol 112 (1) ◽  
pp. 44-49 ◽  
Author(s):  
Zhao Xiaolu ◽  
Qin Lisen

An aerodynamic design method, which is based on the Mean Stream Surface Method (MSSM), has been developed for designing centrifugal compressor impeller blades. As a component of a CAD system for centrifugal compressor, it is convenient to use the presented method for generating impeller blade geometry, taking care of manufacturing as well as aerodynamic aspects. The design procedure starts with an S2m indirect solution. Afterward from the specified S2m surface, by the use of Taylor series expansion, the blade geometry is generated by straight-line elements to meet the manufacturing requirements. Simultaneously, the fluid dynamic quantities across the blade passage can be determined directly. In terms of these results, the designer can revise the distribution of angular momentum along the shroud and hub, which are associated with blade loading, to get satisfactory velocities along the blade surfaces in order to avoid or delay flow separation.


1990 ◽  
Author(s):  
H. David Joslyn ◽  
Joost J. Brasz ◽  
Robert P. Dring

The ability to acquire blade loadings (surface pressure distributions) and surface flow visualization on an unshrouded centrifugal compressor impeller is demonstrated. Circumferential and streamwise static pressure distributions acquired on the stationary shroud are also presented. Data was acquired in a new facility designed for centrifugal compressor aerodynamic research. Blade loadings calculated with a blade–to–blade potential flow analysis are compared with the measured results. Surface flow visualization reveals some complex aspects of the flow on the surface of the impeller blading and hub. In a companion paper, Dorney and Davis (1990), a state–of–the–art, three–dimensional, time–accurate, Navier Stokes prediction of the flow through the impeller is presented.


Author(s):  
Y Wang ◽  
S Komori

A pressure-based finite volume procedure developed previously for incompressible flows is extended to predict the three-dimensional compressible flow within a centrifugal impeller. In this procedure, the general curvilinear coordinate system is used and the collocated grid arrangement is adopted. Mass-averaging is used to close the instantaneous Navier-Stokes equations. The covariant velocity components are used as the main variables for the momentum equations, making the pressure-velocity coupling easier. The procedure is successfully applied to predict various compressible flows from subsonic to supersonic. With the aid of the k-ɛ turbulence model, the flow details within a centrifugal impeller are obtained using the present procedure. Predicted distributions of the meridional velocity and the static pressure are reasonable. Calculated radial velocities and flow angles are favourably compared with the measurements at the exit of the impeller.


Author(s):  
Guang Xi ◽  
Zhiheng Wang ◽  
Chunmei Zhang ◽  
Minjian Yuan

In this paper the design optimization of vaned diffuser for the 100kW microturbine’s centrifugal compressor is carried out. The forward-loaded and the conventional airfoil diffusers are respectively redesigned based on the surrogate model and the three dimensional viscous flow analyses. The objective of the optimization is to redesign the diffuser that assures, for a given operating condition of the centrifugal impeller, the stage isentropic efficiency to be highest. Using the surrogate model the optimization process is accelerated and the 3D flow analysis’s application to the practical engineering design is efficiently realized. To validate the optimization result, the compressor stage performance test is performed on a high speed centrifugal compressor test rig with one original diffuser and its redesigned, respectively.


Author(s):  
Kenichiro Iwakiri ◽  
Masato Furukawa ◽  
Seiichi Ibaraki ◽  
Isao Tomita

This paper presents a combined experimental and numerical analysis of rotating stall in a transonic centrifugal compressor impeller for automotive turbochargers. Stall characteristics of the compressor were examined by two high-response pressure transducers mounted on the casing wall near the impeller inlet. The pressure traces were analyzed by wavelet transforms to estimate the disturbance waves quantitatively. Three-dimensional unsteady internal flow fields were simulated numerically by Detached Eddy Simulation (DES) coupled LES-RANS approach. The analysis results show good agreements on both compressor performance characteristics and the unsteady flow features at the rotating stall. At stall inception, spiral-type breakdown of the full-blade tip leakage vortex was found out at some passages and the brokendown regions propagated against the impeller rotation. This phenomenon changed with throttling, and tornado-type separation vortex caused by the full-blade leading edge separation dominated the flow field at developed stall condition. It is similar to the flow model of short-length scale rotating stall established in an axial compressor rotor.


2005 ◽  
Vol 32 (1) ◽  
pp. 213-232 ◽  
Author(s):  
Subhasish Dey ◽  
Abdul Karim Barbhuiya

The three-dimensional turbulent flow field in a scour hole at a semicircular abutment under a clear water regime was experimentally measured in a laboratory flume using an acoustic Doppler velocimeter. The distributions of time-averaged velocity components, turbulent intensity components, turbulent kinetic energy, and Reynolds stresses at different azimuthal planes are presented. Upstream, presentation of flow field through vector plots at azimuthal and horizontal planes shows the existence of a large primary vortex associated with the downflow inside the scour hole. On the other hand, downstream, the flow field is irregular. The bed shear stresses are determined from the Reynolds stresses and velocity gradients. The data presented in this paper would be useful for the development and validation of flow field models, which can be used to determine the strength of the primary vortex that is used to estimate scour depth at bridge abutments.Key words: bridge abutments, fluid flow, three-dimensional flow, turbulent flow, open channel flow, scour, sediment transport, hydraulic engineering.


Sign in / Sign up

Export Citation Format

Share Document