Impact of Ceramic Components in Gas Turbines for Industrial Cogeneration

Author(s):  
D. Anson ◽  
W. J. Sheppard ◽  
W. P. Parks

A development thrust for the adoption of ceramic components in industrial gas turbines, now being sponsored by the U.S. Department of Energy, may have a considerable impact on the growth rate and ultimate capacity of the cogeneration sector. The economic justification for cogeneration rests on the ability to undercut the cost of purchased power after taking credit for the useful heat recovery, and it is frequently marginal after consideration of fuel, maintenance, and pollution control devices. After reviewing briefly the factors contributing to the economic viability of cogeneration systems, this paper presents arguments to show how the use of ceramics in industrial gas turbine can be instrumental in reducing installation and operating costs. Improved gas turbines based on ceramic materials technology also will provides means for meeting environmental protection requirements without the use of back end flue gas treatment, and will be able to utilize byproduct industrial gaseous and liquid fuels more effectively. These improvements can increase substantially the economic return from cogeneration systems, and are expected to result in increased cogeneration capacity and a sustained market for industrial gas turbines. Predictions are made of the size of the U.S. industrial gas turbine cogeneration market. The annual fuel savings resulting from displacement of utility generation capacity could amount to 2 × 1017 joules (2 × 1014 Btu’s) by the year 2010.

Author(s):  
Bernhard Ćosić ◽  
Frank Reiss ◽  
Marc Blümer ◽  
Christian Frekers ◽  
Franklin Genin ◽  
...  

Abstract Industrial gas turbines like the MGT6000 are often operated as power supply or as mechanical drives. In these applications, liquid fuels like 'Diesel Fuel No.2' can be used either as main fuel or as backup fuel if natural gas is not reliably available. The MAN Gas Turbines (MGT) operate with the Advanced Can Combustion (ACC) system, which is capable of ultra-low NOx emissions for gaseous fuels. This system has been further developed to provide dry dual fuel capability. In the present paper, we describe the design and detailed experimental validation process of the liquid fuel injection, and its integration into the gas turbine package. A central lance with an integrated two-stage nozzle is employed as a liquid pilot stage, enabling ignition and start-up of the engine on liquid fuel only. The pilot stage is continuously operated, whereas the bulk of the liquid fuel is injected through the premixed combustor stage. The premixed stage comprises a set of four decentralized nozzles based on fluidic oscillator atomizers, wherein atomization of the liquid fuel is achieved through self-induced oscillations. We present results illustrating the spray, hydrodynamic, and emission performance of the injectors. Extensive testing of the burner at atmospheric and full load high-pressure conditions has been performed, before verification within full engine tests. We show the design of the fuel supply and distribution system. Finally, we discuss the integration of the dual fuel system into the standard gas turbine package of the MGT6000.


Author(s):  
R. J. Antos ◽  
W. C. Emmerling

One common method of reducing the NOx emissions from industrial gas turbines is to inject water into the combustion process. The amount of water injected depends on the emissions rules that apply to a particular unit. Westinghouse W501B industrial gas turbines have been operated at water injection levels required to meet EPA NOx emissions regulations. They also have been operated at higher injection levels required to meet stricter California regulations. Operation at the lower rates of water did not affect combustor inspection and/or repair intervals. Operation on liquid fuels with high rates of water also did not result in premature distress. However, operation on gas fuel at high rates of water did cause premature distress in the combustors. To evaluate this phenomenon, a comprehensive test program was conducted; it demonstrated that the distress is the result of the temperature patterns in the combustor caused by the high rates of water. The test also indicated that there is no significant change in dynamic response levels in the combustor. This paper presents the test results, and the design features selected to substantially improve combustor wall temperature when operating on gas fuels, with the high rates of water injection required to meet California applications. Mechanical design features that improve combustor resistance to water injection-induced thermal gradients also are presented.


1978 ◽  
Vol 100 (4) ◽  
pp. 704-710
Author(s):  
Ch. Just ◽  
C. J. Franklin

The need for a thorough and systematic standard evaluation program for new materials for modern industrial gas turbines is shown by several examples and facts. A complete list of the data required by the designer of an industrial gas turbine is given, together with comments to some of the more important properties. A six-phase evaluation program is described which minimizes evaluation time, cost, and the risk of introducing a new material.


2020 ◽  
Vol 51 (9) ◽  
pp. 4902-4921 ◽  
Author(s):  
Sabin Sulzer ◽  
Magnus Hasselqvist ◽  
Hideyuki Murakami ◽  
Paul Bagot ◽  
Michael Moody ◽  
...  

Abstract Industrial gas turbines (IGT) require novel single-crystal superalloys with demonstrably superior corrosion resistance to those used for aerospace applications and thus higher Cr contents. Multi-scale modeling approaches are aiding in the design of new alloy grades; however, the CALPHAD databases on which these rely remain unproven in this composition regime. A set of trial nickel-based superalloys for IGT blades is investigated, with carefully designed chemistries which isolate the influence of individual additions. Results from an extensive experimental characterization campaign are compared with CALPHAD predictions. Insights gained from this study are used to derive guidelines for optimized gas turbine alloy design and to gauge the reliability of the CALPHAD databases.


Author(s):  
R. A. Wenglarz ◽  
C. Wilkes ◽  
R. C. Bourke ◽  
H. C. Mongia

This paper describes the first test of an industrial gas turbine and low emissions combustion system on coal-water-slurry fuel. The engine and combustion system have been developed over the past five years as part of the Heat Engines program sponsored by the Morgantown Energy Technology Center of the U.S. Department of Energy (DOE). The engine is a modified Allison 501-K industrial gas turbine designed to produce 3.5 MW of electrical power when burning natural gas or distillate fuel. Full load power output increases to approximately 4.9 MW when burning coal-water slurry as a result of additional turbine mass flow rate. The engine has been modified to accept an external staged combustion system developed specifically for burning coal and low quality ash-bearing fuels. Combustion staging permits the control of NOx from fuel-bound nitrogen while simultaneously controlling CO emissions. Water injection freezes molten ash in the quench zone located between the rich and lean zones. The dry ash is removed from the hot gas stream by two parallel cyclone separators. This paper describes the engine and combustor system modifications required for running on coal and presents the emissions and turbine performance data from the coal-water slurry testing. Included is a discussion of hot gas path ash deposition and planned future work that will support the commercialization of coal-fired gas turbines.


1992 ◽  
Vol 114 (2) ◽  
pp. 161-168 ◽  
Author(s):  
I. S. Diakunchak

This paper describes the most important factors affecting the industrial gas turbine engine performance deterioration with service time and provides some approximate data on the prediction of the rate of deterioration. Recommendations are made on how to detect and monitor the performance deterioration. Preventative measures, which can be taken to avoid or retard the performance deterioration, are described in some detail.


Author(s):  
Arne Loft

This paper gives a brief summary of the experience of the first industrial gas turbine ship, the John Sergeant, then enumerates the basic characteristics of the heavy duty gas turbine and the philosophy employed in the design. The unique features of the second-stage variable area turbine nozzle, its effects on performance, and particularly the flexible control it affords in conjunction with the controllable and reversible pitch propeller, are discussed. The philosophy of design of the solid state control, protection and sequential systems are outlined, as are the experiences to date with a number of industrial gas turbines of the two-shaft, off-shore and heavy fuel varieties. It concludes by discussing some of the considerations for burning residual fuel and boil-off from liquefied natural gas.


Author(s):  
S. J. Gill ◽  
M. D. Ingallinera ◽  
A. G. Sheard

The continuing development of industrial gas turbines is resulting in machines of increasing power and efficiency. The need to continue this trend is focusing attention on minimizing all loss mechanisms within the machine, including those associated with turbine blade tip clearance. In order to study tip clearance in the turbine, real time measurement is required of clearance between turbine blades and the casing in which they run. This measurement is not routinely performed, due to the harsh nature of the turbine environment. On those occasions when turbine tip clearance is measured, it is typically in development vehicles, often using cooled probes that are somewhat unsuitable for use in production gas turbines. In this paper a program of work is reported that was undertaken with the purpose of identifying a promising turbine tip clearance measurement system that used the capacitive gap measurement technique. Issues surrounding the application of three systems to the turbine section of a GE MS6001FA gas turbine are identified and reported. Performance of the three evaluated systems is analyzed.


Author(s):  
Ihor S. Diakunchak

This paper describes the most important factors affecting the industrial gas turbine engine performance deterioration with service time and provides some approximate data on the prediction of the rate of deterioration. Recommendations are made on how to detect and monitor the performance deterioration. Preventative measures, which can be taken to avoid or retard the performance deterioration, are described in some detail.


Author(s):  
Dan Burnes ◽  
Priyank Saxena ◽  
Paul Dunn

Abstract The growing call of minimizing carbon dioxide and other greenhouse gases emitting from energy and transportation products will spur innovation to meet new stringent requirements while striving to preserve significant investments in the current infrastructure. This paper presents quantitative analysis of exhaust gas recirculation (EGR) on industrial gas turbines to enable carbon sequestration venturing towards emission free operation. This study will show the effect of using EGR on gas turbine performance and operation, combustion characteristics, and demonstrate potential hybrid solutions with detailed constituent accounting. Both single shaft and two shaft gas turbines for power generation and mechanically driven equipment are considered for application of this technology. One key element is assessing the combustion system operating at reduced O2 levels within the industrial gas turbine. With the gas turbine behavior operating with EGR defined at a reasonable operating state, a parametric study shows rates of CO2 sequestration along with quantifying supplemental O2 required at the inlet, if needed, to sustain combustion. With rates of capture known, a further exploration is examined reviewing potential utilities, monetizing these sequestered constituents. Ultimately, the objective is to preview a potential future of operating industrial gas turbines in a non-emissive and in some cases carbon negative manner while still using hydrocarbon fuel.


Sign in / Sign up

Export Citation Format

Share Document