Synthesis of Non-Uniform Stroke Piston Engines

Author(s):  
M. Chew ◽  
T. A. Good

Abstract Piston engines have generally been designed with strokes that are uniform throughout the engine cycle. Variable-stroke engines have been designed with the capability to change the stroke lengths from cycle to cycle depending on load requirement. This article examines the synthesis of piston engines that are designed to have different stroke lengths and different relative stroke timing over an engine cycle. Such piston trajectories have been found to exhibit very high thermal efficiencies without resorting to high compression ratios. An investigation into different mechanisms and approaches toward the synthesis of such engine mechanisms is presented.

Author(s):  
Julien Pilet ◽  
Jean-Loi¨c Lecordix ◽  
Nicolas Garcia-Rosa ◽  
Roger Bare`nes ◽  
Ge´rard Lavergne

This paper presents a fully-coupled zooming approach for the performance simulation of modern very high bypass ratio turbofan engines developed by Snecma. This simulation is achieved by merging detailed 3D simulations and map component models into a unified representation of the whole engine. Today’s state-of-the-art engine cycle analysis are commonly based on component mapping models which enable component interactions to be considered, while CFD simulations are carried out separately and therefore overlook those interactions. With the methodology discussed in this paper, the detailed analysis of an engine component is no longer considered apart, but directly within the whole engine performance model. Moreover, all links between the 3D simulation and overall engine models have been automated making this zooming simulation fully-integrated. The simulation uses the PROOSIS propulsion object-oriented simulation software developed by Empresarios Agrupados for whole engine cycle analysis and the computational fluid dynamics (CFD) code CEDRE developed by ONERA for the high fidelity 3-D component simulations. The whole engine model is created by linking component models through their communication ports in a graphical user-friendly interface. CFD simulated component models have been implemented in PROOSIS libraries already providing mapped components. Simple averaging techniques have been developed to handle 3D-to-0D data exchange. Boundary conditions of the whole engine model remain the same as for the typical 0-D engine cycle analysis while those of the 3-D simulations are automatically given by PROOSIS to CEDRE. This methodology has been applied on an advanced very high bypass ratio engine developed by Price Induction. The proposed zooming approach has been performed on the fan stage when simulating Main Design Point as well as severe case of off-design conditions such as wind-milling. The results have been achieved within the same time frame of a typical CFD fully-converged calculation. A detailed comparison with upcoming test results will provide a first validation of the methodology and will be presented in a future paper.


2014 ◽  
Vol 157 (2) ◽  
pp. 45-59
Author(s):  
Jakub CZAJKA ◽  
Krzysztof WISŁOCKI ◽  
Ireneusz PIELECHA ◽  
Przemysław BOROWSKI

The main target of this work was to investigate on the 1-cyl. research engine concerning practical realization possibilities of cold-flame-combustion when operating with high and very high Exhaust Gas Recirculation (EGR) rates. After determining of possibilities of lowering NOx and Soot emissions for EGR rates ca. 40-60% some further investigation on optimization of SOI and CoC parameters were performed. Additionally, some preliminary investigations of the optimization of combustion parameters when applying various strategies of multi-injection have been conducted and analyzed.


1994 ◽  
Vol 144 ◽  
pp. 593-596
Author(s):  
O. Bouchard ◽  
S. Koutchmy ◽  
L. November ◽  
J.-C. Vial ◽  
J. B. Zirker

AbstractWe present the results of the analysis of a movie taken over a small field of view in the intermediate corona at a spatial resolution of 0.5“, a temporal resolution of 1 s and a spectral passband of 7 nm. These CCD observations were made at the prime focus of the 3.6 m aperture CFHT telescope during the 1991 total solar eclipse.


1988 ◽  
Vol 102 ◽  
pp. 79-81
Author(s):  
A. Goldberg ◽  
S.D. Bloom

AbstractClosed expressions for the first, second, and (in some cases) the third moment of atomic transition arrays now exist. Recently a method has been developed for getting to very high moments (up to the 12th and beyond) in cases where a “collective” state-vector (i.e. a state-vector containing the entire electric dipole strength) can be created from each eigenstate in the parent configuration. Both of these approaches give exact results. Herein we describe astatistical(or Monte Carlo) approach which requires onlyonerepresentative state-vector |RV> for the entire parent manifold to get estimates of transition moments of high order. The representation is achieved through the random amplitudes associated with each basis vector making up |RV>. This also gives rise to the dispersion characterizing the method, which has been applied to a system (in the M shell) with≈250,000 lines where we have calculated up to the 5th moment. It turns out that the dispersion in the moments decreases with the size of the manifold, making its application to very big systems statistically advantageous. A discussion of the method and these dispersion characteristics will be presented.


Author(s):  
Y. L. Chen ◽  
S. Fujlshiro

Metastable beta titanium alloys have been known to have numerous advantages such as cold formability, high strength, good fracture resistance, deep hardenability, and cost effectiveness. Very high strength is obtainable by precipitation of the hexagonal alpha phase in a bcc beta matrix in these alloys. Precipitation hardening in the metastable beta alloys may also result from the formation of transition phases such as omega phase. Ti-15-3 (Ti-15V- 3Cr-3Al-3Sn) has been developed recently by TIMET and USAF for low cost sheet metal applications. The purpose of the present study was to examine the aging characteristics in this alloy.The composition of the as-received material is: 14.7 V, 3.14 Cr, 3.05 Al, 2.26 Sn, and 0.145 Fe. The beta transus temperature as determined by optical metallographic method was about 770°C. Specimen coupons were prepared from a mill-annealed 1.2 mm thick sheet, and solution treated at 827°C for 2 hr in argon, then water quenched. Aging was also done in argon at temperatures ranging from 316 to 616°C for various times.


Author(s):  
J. Temple Black

Tool materials used in ultramicrotomy are glass, developed by Latta and Hartmann (1) and diamond, introduced by Fernandez-Moran (2). While diamonds produce more good sections per knife edge than glass, they are expensive; require careful mounting and handling; and are time consuming to clean before and after usage, purchase from vendors (3-6 months waiting time), and regrind. Glass offers an easily accessible, inexpensive material ($0.04 per knife) with very high compressive strength (3) that can be employed in microtomy of metals (4) as well as biological materials. When the orthogonal machining process is being studied, glass offers additional advantages. Sections of metal or plastic can be dried down on the rake face, coated with Au-Pd, and examined directly in the SEM with no additional handling (5). Figure 1 shows aluminum chips microtomed with a 75° glass knife at a cutting speed of 1 mm/sec with a depth of cut of 1000 Å lying on the rake face of the knife.


Sign in / Sign up

Export Citation Format

Share Document