Towards a Fully Coupled Component Zooming Approach in Engine Performance Simulation

Author(s):  
Julien Pilet ◽  
Jean-Loi¨c Lecordix ◽  
Nicolas Garcia-Rosa ◽  
Roger Bare`nes ◽  
Ge´rard Lavergne

This paper presents a fully-coupled zooming approach for the performance simulation of modern very high bypass ratio turbofan engines developed by Snecma. This simulation is achieved by merging detailed 3D simulations and map component models into a unified representation of the whole engine. Today’s state-of-the-art engine cycle analysis are commonly based on component mapping models which enable component interactions to be considered, while CFD simulations are carried out separately and therefore overlook those interactions. With the methodology discussed in this paper, the detailed analysis of an engine component is no longer considered apart, but directly within the whole engine performance model. Moreover, all links between the 3D simulation and overall engine models have been automated making this zooming simulation fully-integrated. The simulation uses the PROOSIS propulsion object-oriented simulation software developed by Empresarios Agrupados for whole engine cycle analysis and the computational fluid dynamics (CFD) code CEDRE developed by ONERA for the high fidelity 3-D component simulations. The whole engine model is created by linking component models through their communication ports in a graphical user-friendly interface. CFD simulated component models have been implemented in PROOSIS libraries already providing mapped components. Simple averaging techniques have been developed to handle 3D-to-0D data exchange. Boundary conditions of the whole engine model remain the same as for the typical 0-D engine cycle analysis while those of the 3-D simulations are automatically given by PROOSIS to CEDRE. This methodology has been applied on an advanced very high bypass ratio engine developed by Price Induction. The proposed zooming approach has been performed on the fan stage when simulating Main Design Point as well as severe case of off-design conditions such as wind-milling. The results have been achieved within the same time frame of a typical CFD fully-converged calculation. A detailed comparison with upcoming test results will provide a first validation of the methodology and will be presented in a future paper.

Author(s):  
Alexios Alexiou ◽  
Charalambos Frantzis ◽  
Nikolaos Aretakis ◽  
Vassilios Riziotis ◽  
Ioannis Roumeliotis ◽  
...  

This paper presents a method for modelling contra-rotating propellers (CRP) for engine performance simulations. An in-house free-wake lifting surface tool (GENUVP) is used to generate suitable performance maps for each propeller that express power and thrust coefficient in terms of advance ratio, flight Mach number, speed ratio and blade pitch angle of each propeller. Appropriate component models that utilize these maps are then developed in a commercial engine performance simulation environment (PROOSIS). Next, the propeller components are integrated in a direct-drive open rotor engine model. Finally, design point and off-design simulations are carried out that demonstrate the use of the model through studies of different propeller blade angle control strategies.


Author(s):  
Ioannis Kolias ◽  
Alexios Alexiou ◽  
Nikolaos Aretakis ◽  
Konstantinos Mathioudakis

A mean-line compressor performance calculation method is presented that covers the entire operating range, including the choked region of the map. It can be directly integrated into overall engine performance models, as it is developed in the same simulation environment. The code materializing the model can inherit the same interfaces, fluid models, and solvers, as the engine cycle model, allowing consistent, transparent, and robust simulations. In order to deal with convergence problems when the compressor operates close to or within the choked operation region, an approach to model choking conditions at blade row and overall compressor level is proposed. The choked portion of the compressor characteristics map is thus numerically established, allowing full knowledge and handling of inter-stage flow conditions. Such choking modelling capabilities are illustrated, for the first time in the open literature, for the case of multi-stage compressors. Integration capabilities of the 1D code within an overall engine model are demonstrated through steady state and transient simulations of a contemporary turbofan layout. Advantages offered by this approach are discussed, while comparison of using alternative approaches for representing compressor performance in overall engine models is discussed.


Author(s):  
I. Roumeliotis ◽  
A. Alexiou ◽  
N. Aretakis ◽  
G. Sieros ◽  
K. Mathioudakis

Rain ingestion can significantly affect the performance and operability of gas turbine aero-engines. In order to study and understand rain ingestion phenomena at engine level, a performance model is required that integrates component models capable of simulating the physics of rain ingestion. The current work provides, for the first time in the open literature, information about the setup of a mixed-fidelity engine model suitable for rain ingestion simulation and corresponding overall engine performance results. Such a model can initially support an analysis of rain ingestion during the predesign phase of engine development. Once components and engine models are validated and calibrated versus experimental data, they can then be used to support certification tests, the extrapolation of ground test results to altitude conditions, the evaluation of control or engine hardware improvements and eventually the investigation of in-flight events. In the present paper, component models of various levels of fidelity are first described. These models account for the scoop effect at engine inlet, the fan effect and the effects of water presence in the operation and performance of the compressors and the combustor. Phenomena such as velocity slip between the liquid and gaseous phases, droplet breakup, droplet–surface interaction, droplet and film evaporation as well as compressor stages rematching due to evaporation are included in the calculations. Water ingestion influences the operation of the components and their matching, so in order to simulate rain ingestion at engine level, a suitable multifidelity engine model has been developed in the Proosis simulation platform. The engine model's architecture is discussed, and a generic high bypass turbofan is selected as a demonstration test case engine. The analysis of rain ingestion effects on engine performance and operability is performed for the worst case scenario, with respect to the water quantity entering the engine. The results indicate that rain ingestion has a strong negative effect on high-pressure compressor surge margin, fuel consumption, and combustor efficiency, while more than half of the water entering the core is expected to remain unevaporated and reach the combustor in the form of film.


Author(s):  
Francesco Montella ◽  
J. P. van Buijtenen

This paper presents a simplified and fast method to evaluate the impact of a single engine component design on the overall performance. It consists of three steps. In the first step, an engine system model is developed using available data on existing engines. Alongside the cycle reference point, a sweep of operating points within the flight envelop is simulated. The engine model is tuned to match a wide range of conditions. In the second step, the module that contains the engine component of interest is analyzed. Different correlations between the component design and the module efficiency are investigated. In the third step, the deviations in efficiency related to different component configurations are implemented in the engine baseline model. Eventually, the effects on the performances are evaluated. The procedure is demonstrated for the case of a two-spool turbofan. The effects of tip leakage in the low pressure turbine on the overall engine performance are analyzed. In today’s collaborative engine development programs, the OEMs facilitate the design process by using advanced simulation software, in-house available technical correlations and experience. Suppliers of parts have a limited influence on the design of the components they are responsible for. This can be rectified by the proposed methodology and give subcontractors a deeper insight into the design process. It is based on commercially available PC engine simulation tools and provides a general understanding of the relations between component design and engine performance. These relations may also take into account of aspects like production technology and materials in component optimization.


Author(s):  
Tashfeen Mahmood ◽  
Anthony Jackson ◽  
Vishal Sethi ◽  
Pericles Pilidis

This paper discusses thrust reversing techniques for a separate exhaust high bypass ratio turbofan engine and its effect on aircraft and engine performance. Cranfield University is developing suitable thrust reverser performance models. These thrust reverser performance models will subsequently be integrated within the TERA (Techno-economic Environmental Risk Analysis) architecture thereby allowing for more detailed and accurate representations of aircraft and engine performance during the landing phase of a typical civil aircraft mission. The turbofan engine chosen for this study was CUTS_TF (Cranfield University Twin Spool Turbofan) which is similar to the CFM56-5B4 engine and the information available in the public domain is used for the engine performance analysis along with the Gas Turbine Performance Software, ‘GasTurb 10’ [1]. The CUTEA (Cranfield University Twin Engine Aircraft) which is similar to the Airbus A320 is used alongside with the engine model for the thrust reverser performance calculations. The aim of this research paper is to investigate the effects on aircraft and engine performance characteristics due to the pivoting door type thrust reverser deployment. The paper will look into the overall engine performance characteristics and how the engine components get affected when the thrust reversers come into operation. This includes the changes into the operating point of fan, booster, HP compressor, HP turbine, LP turbine, bypass nozzle and core nozzle. Also, thrust reverser performance analyses were performed (at aircraft/engine system level) by varying the reverser exit area by ± 5% and its effect on aircraft deceleration rate, deceleration time and landing distances were observed.


Author(s):  
Tashfeen Mahmood ◽  
Anthony Jackson ◽  
Syed H. Rizvi ◽  
Pericles Pilidis ◽  
Mark Savill ◽  
...  

This paper discusses thrust reverser techniques for a mixed exhaust high bypass ratio turbofan engine and its effect on aircraft and engine performance. The turbofan engine chosen for this study was CUTS_TF (Cranfield University Three Spool Turbofan) which is similar to Rolls-Royce TRENT 772 engine and the information available for this engine in the public domain is used for the engine performance analysis along with the Gas Turbine Performance Software, GasTurb 10. The CUTEA (Cranfield University Twin Engine Aircraft) which is similar to the Airbus A330 is used along side with the engine model for the thrust reverser performance calculations. The aim of this research paper is to investigate the effects on mixed exhaust engine performance due to the pivoting door type thrust reverser deployment. The paper looks into the engine off-design performance characteristics and how the engine components get affected when the thrust reverser come into operation. This includes the changes into the operating point of fan, IP compressor, HP compressor, HP turbine, IP turbine, LP turbine and the engine exhaust nozzle. Also, the reverser deployment effect on aircraft, deceleration time and landing distances are discussed.


2017 ◽  
Vol 79 (7-4) ◽  
Author(s):  
Muhammad Hariz Khairuddin ◽  
Muhammad Fitri Shamsul Bahri ◽  
Afiq Aiman Dahlan ◽  
Mahadhir Mohammad ◽  
Mohd Farid Muhamad Said

Intake manifold system is one of the important component in the engine system which functions to evenly distribute the air flows into every cylinder of the engine. With the restricted air intake rule regulation, the intake air system for a car must be properly design in order to minimize the performance dropped caused by the restrictor. The paper presents the study on the effects of intake design parameter towards the performance of the engine and then improves the performance of previous intake manifold system. This study starts with the development of Honda CBR 600RR engine model and intake manifold system model using GT-Power engine simulation software to be used for the simulation purposes. After developing the reference engine model, the parametric study was carried out to study the effect of the intake manifold parameter design on the engine performance. The optimization process was then performed to achieve the target of improvement which has already been set prior to performing the optimization. The final results show an increase up to 4.83% and 4.45% of torque and air flow rate respectively at the desired operating range of engine speed.


Author(s):  
M. S. Zawislak ◽  
D. J. Cerantola ◽  
A. M. Birk

A high bypass ratio turbofan engine capable of powering the Boeing 757 was considered for thrust and drag analysis. A quasi-2D engine model applying the fundamental thermodynamics conservation equations and practical constraints determined engine performance and provided cross-sectional areas in the low-pressure system. Coupled with suggestions on boat-tail angle and curvature from literature, a representative bypass duct and primary exhaust nozzle was created. 3D steady-RANS simulations using Fluent® 18 were performed on a 1/8th axisymmetric section of the geometry. A modified 3D fan zone model forcing radial equilibrium was used to model the fan and bypass stator. Takeoff speed and cruise operating conditions were modeled and simulated to identify changes in thrust composition and intake sensitivity. Comparison between net thrust predictions by the engine model and measured in CFD were within grid uncertainty and model sensitivity at cruise. Trends observed in a published database were satisfied and calculations coincided with GasTurb™ 8.0. Verification of thrust in this manner gave confidence to the aerodynamic performance prediction of this modest CFD. Obtaining a baseline bypass design would allow rapid testing of aftermarket components and integration techniques in a realistic flow-field without reliance on proprietary engine data.


2013 ◽  
Vol 465-466 ◽  
pp. 125-129 ◽  
Author(s):  
Muhammad Yusri Ismail ◽  
Ahmad Jais Alimin ◽  
Shahrul Azmir Osman

The scarcity of oil resources and the rise of crude oil price had driven the whole world to seek for an alternative fuel for automotive industry. One of the prospective alternative fuels for compression ignition (C.I.) engine is compressed natural gas (CNG). In order to operate CNG in a C.I. engine as mono-gas engine (RE), several modifications are required. The modifications that involves are compression ratio, fuel injection type, addition of spark plug and fuel itself. So as to reduce the time in preparing the experimental test bed and high cost analytical study a 1-dimensional simulation software GT-Power was introduce. The GT-Power simulation model for a 4 cylinder medium duty C.I. engine (DE) and RE has been built to study the effects of conversion process to the performance and emissions of the engine at various operational conditions: low, medium and high load conditions. As compared with DE model, results from RE model showed loss in brake power (BP) and brake thermal efficiency (BTE) by 37.3% and 19% respectively. Meanwhile, for brake specific air consumption (BSAC) RE predicted to undergo an average of 19412.6 g/kW-h and increment in volumetric efficiency by percentage of difference 22%. In other side, oxides of nitrogen (NOx) RE engine model predicted reduction of 48.1% (engine mode 1-9) and increased in hydrocarbons (HC) by 90.3.


2013 ◽  
Vol 135 (6) ◽  
Author(s):  
Vishal Sethi ◽  
Georgios Doulgeris ◽  
Pericles Pilidis ◽  
Alex Nind ◽  
Marc Doussinault ◽  
...  

This paper describes the structure and the implementation of an extended parametric representation of compressor characteristics for a modern object oriented gas turbine performance simulation software (PROOSIS). The proposed methodology is the map fitting tool (MFT) methodology. The proposed MFT methodology for modeling the off design performance of gas turbine turbomachinery components (fans, compressors, and turbines) is based on a concept conceived and developed collaboratively by General Electric (GE) and NASA. This paper provides a short description of both BETA and MFT compressor maps, as well as the development of compressor component models in PROOSIS capable of using both types of maps for off design compressor performance prediction. The work presented in this paper is the outcome of a collaborative effort between Snecma Moteurs and Cranfield University as part of the European Cycle Program of the EU FP6 collaborative project—VIVACE. A detailed description of the MFT map methodology is provided with a “step-by-step” calculation procedure. Synergies between compressor MFT and compressor BETA calculations are also highlighted and a description of how these two components have been integrated into an object oriented simulation software with component hierarchy is also presented. Advanced parametric representations of fan and turbine characteristics have also been developed within PROOSIS. However, a description of these methodologies is beyond the scope of this publication. Additionally, a comparison between the advantages and disadvantages between BETA and MFT maps is an interesting debate. However, this is also beyond the scope of this paper.


Sign in / Sign up

Export Citation Format

Share Document